Trichloroethylene: Occupational Exposure Level for the DoD

U.S. ARMY PUBLIC HEALTH CENTER

Desmond I. Bannon¹, Tammie R. Covington², Mark S. Johnson¹, Glenn J. Leach¹

¹Toxicology Directorate U.S. Army Public Health Center

²HJF on contract to Airman Systems Directorate U.S. Air Force Research

Laboratory

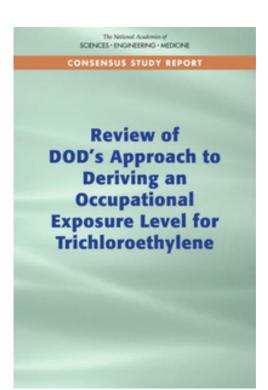
Feb 9, 2022

Trichloroethylene (TCE)

The views expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy of the Department of Defense, Department of the Army, U.S. Army Medical Department, U.S. Air Force or the U.S. Government.

The mention of any non-federal entity and/or its products is not to be construed or interpreted, in any manner, as federal endorsement of that non-federal entity or its products.

Trichloroethylene (TCE)



- TCE is a widely used industrial solvent.
- Thousands of studies demonstrate widespread toxic effects of TCE exposure.
- Inhalation is the primary route of exposure for workers.
- Another exposure concern is from soil vapor intrusion.
- Exposure standards endorsed by various governmental regulatory agencies:
 - 1978 NIOSH Recommended Exposure Limit (25 parts per million (ppm))
 - 1993 OSHA Permissible Exposure Limit (100 ppm)
 - 2007 ACGIH Threshold Limit Values (TLV®) (10 ppm)
 - EPA Regional Screening Levels Composite Worker Air (non-cancer: 0.0016 ppm, 1x10⁻⁶ cancer risk: 0.0006 ppm)
 - 2011 EPA Integrated Risk Information System (IRIS)
 Reference Concentration (RfC) (0.0004 ppm)
- The goal of this DoD report is to develop an acceptable occupational exposure level (OEL) for inhalation TCE exposure that applies to all workers, including those potentially impacted by vapor intrusion.

Background: 2019 Report

- Agreed with DoD on need for an updated OEL for TCE.
- Agreed with leveraging use of prior reviews (e.g., US EPA, ACGIH, etc.). Agreed with dose-response, use of Physiologically Based Pharmacokinetic Modelling (PBPK), Bayesian approach for uncertainty analysis.
- Suggested implementing provisional TCE OEL (0.9 ppm)
- Did not endorse DoD's systematic approach.
- Recommendations for improvement included:
 - Used <u>narrative approach</u> for cancer and noncancer studies.
 - Improved <u>transparency</u> of report.
 - Used internal dose metric as Point of Departure (POD).
- A small "Meeting of Experts" under the Committee on Toxicology (COT) provided additional comments (August 2021) as Rev 1.1 was underway.

Report Rev 1.1

- Narrative review of the currently current toxicological data to identify adverse health effects associated with TCE exposure.
- Leverage previous toxicology reports (EPA, ATSDR, etc.).
- Identify evidence supporting causal interpretations of any adverse human health effects due to TCE.
- Utilize methods that maximize scientific robustness and transparency, while <u>balancing timeliness and resources</u> (published approach from Lent et al, 2021).

Approach (Lent et al. 2021)

Original Article

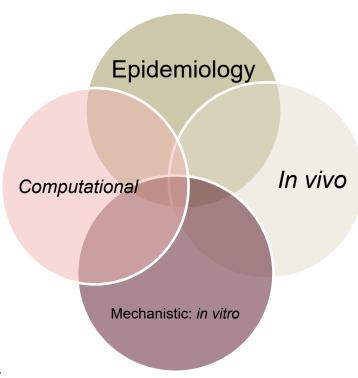
Using Evidence Integration Techniques in the Development of Health-Based Occupational Exposure Levels

International Journal of Toxicology 2021, Vol. 40(2) 178-195 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1091581820970494 journals.sagepub.com/home/ijt

(\$)SAGE

Emily May Lent¹, Thomas E. Sussan¹, Glenn J. Leach², and Mark S. Johnson¹ (1)

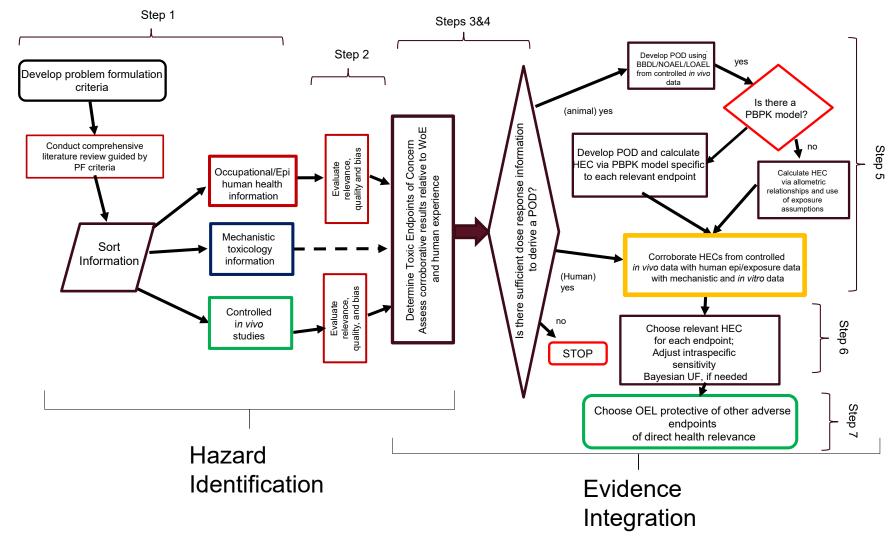
Abstract


Development of toxicology-based criteria such as occupational exposure levels (OELs) are rarely straightforward. This process requires a rigorous review of the literature, searching for patterns in toxicity, biological plausibility, coherence, and dose-response relationships. Despite the direct applicability, human data are rarely used primarily because of imprecise exposure estimates, unknown influence of assumptions, and confounding factors. As a result, high reliance is often placed on laboratory animal data. Often, data from a single study is typically used to represent an entire database to extrapolate an OEL, even for data-rich compounds. Here we present a holistic framework for evaluating epidemiological, controlled *in vivo*, mechanistic/*in vitro*, and computational evidence that can be useful in deriving OELs. It begins with describing a documented review process of the literature, followed by sorting of data into either controlled laboratory *in vivo*, *in silico*/read-across, mechanistic/*in vitro*, or epidemiological/field data categories. Studies are then evaluated and qualified based on rigor, risk of bias, and applicability for point of departure development. Other data (eg, *in vitro*, *in silico* estimates, read-across data and mechanistic information, and data that failed to meet the former criteria) are used alongside qualified epidemiological exposure estimates to help inform points of departure or human-equivalent concentrations that are based on toxic end points. Bayesian benchmark dose methods are used to estimate points of departure and for estimating uncertainty factors (UFs) to develop preliminary OELs. These are then compared with epidemiological data to support the OEL and the use and magnitude of UFs, when appropriate.

Toxicological Evidence (Lent et al, 2020)

- Epidemiology:
 - Pros: Human data, realistic exposure scenarios
 - Cons: Confounders (mixtures); lack of causeeffect
- In vivo animal:
 - Pros: Models include toxicokinetics and dynamics
 - Cons: Animals are different than humans
- In vitro:
 - Pros: Can investigate low doses in human cell lines
 - Cons: Missing interconnectivity, kinetics, adaptation
- Computational:
 - Pros: Relatively fast, based on shared molecular moieties/Modes of Action
 - Cons: Models often incorrect

Summary – DoD Response

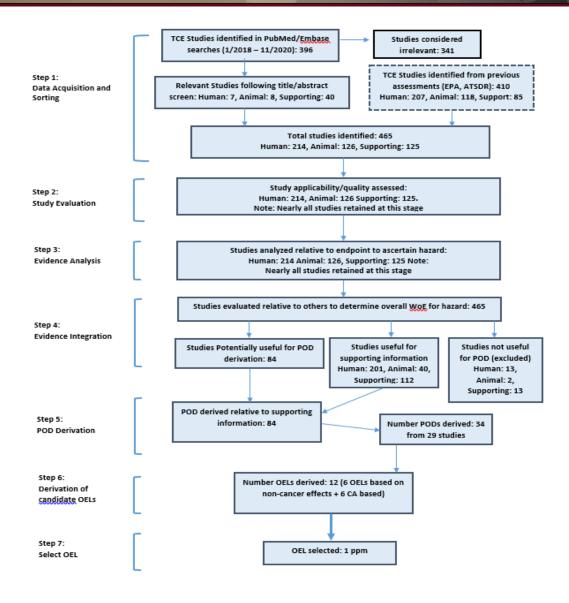


- Main differences in Rev 1.1:
 - Developed narrative approach (Lent et al, 2021):
 - Began with hazard assessment/identification.
 - Evaluated cancer studies to same extent as non-cancer studies.
 - Evaluated all potential endpoints equally/objectively.
 - Clarified evidence integration:
 - Added Figures 1 and 2 (revised) to clarify/summarize the narrative process.
 - Added evidence integration tables (Tables 2 and 3).
 - Better incorporation of mechanistic evidence (Table 2).
 - Cancer dose-response.
 - Added Figure 9 to compare OEL values to known human exposures.
 - Dose-Response:
 - Dose-response based on (Benchmark Dose Software) BMDS modelling of internal doses (via PBPK).

Lent et al. 2020 (adapted from)

Note: Narrative for Steps 1-7 listed in the report

Literature Search



- Existing reviews (e.g., reports from EPA, NAS, IARC, ATSDR, NIOSH, ACGIH) used as scoping reviews.
- Studies published prior to 2020 were identified via:
 - Summary tables published in EPA and ATSDR reports.
 - Key studies identified in other expert reviews.
- Human and mammalian toxicity studies published from January 2019
 - November 2020 were identified via a literature search of PubMed and Embase ("Trichloroethylene OR Trichloroethene").
- Mechanistic evidence was identified via scoping reviews and targeted literature searches.

Summary of Steps

Hazard Identification

Evidence Analysis

- Narrative review of relevant studies:
 - Controlled mammalian studies: <u>inhalation</u> (other routes considered when inhalation data lacking), ≥ subchronic duration studies (or appropriate for study type).
 - Human observational studies (<u>occupational</u> and residential).
- Identify target organs/critical effects:
 - Neurological, kidney, liver, immunological, reproductive, developmental, and cancer.
 - Nearly all information considered for Hazard ID; dose-response data where available for POD derivation.

Hazard Identification – Evidence Integration

- Within Lines of Evidence (LOEs) (Synthesis of Evidence):
 - Narrative synthesis of strengths and weaknesses (e.g., strength of effect, consistency, temporality, dose-response, plausibility, coherence); done in Step 2, presented in Steps 3&4).
 - Qualitative hazard characterization of "sufficient evidence of hazard" or "insufficient evidence of hazard" for each endpoint/effect/target organ.
- Across LOEs (Evidence Integration):
 - "Insufficient" vs. "sufficient" information based on review of all three lines of evidence (animal, human, mechanistic).
 - Integrate evidence within and between LOEs.
 - Informed by MOA/mechanistic evidence.

Table 2. Synthesis of Evidence

Table 2. Summary of evidence integration for target organ systems across categorical data streams

Streams Target Organ System	Human	Animal	Mechanistic*	Comments
Neurological	Sufficient	Sufficient	Suggestive	Historical anesthetic use. Auditory, psychomotor, and visual effects.
Kidney	Sufficient	Sufficient	Suggestive	Biomarkers of kidney injury in animals and humans suggests tubular injury
Hepatic	Sufficient (high exposures)	Sufficient	Suggestive	Weak human evidence
Reproductive	Sufficient (males)	Sufficient (males)	Suggestive (males)	No change in fertility in rodents
Developmental	Insufficient	Sufficient (growth) Insufficient (terrata)	Indeterminate (inhalation) Suggestive (oral)	Perinatal survival and growth at high exposures in animals.
Immune	Sufficient	Sufficient	Suggestive	Autoimmunity
Kidney cancer	Sufficient	Insufficient	Suggestive	High doses.
Non-Hodgkin's Lymphoma	Insufficient	Insufficient	Indeterminate	
Liver cancer	Insufficient	Sufficient	Indeterminate	
Repro. and other cancers	Insufficient	Sufficient	Indeterminate	Testicular/lung in specific animal strains

^{*}Terms "suggestive" and "indeterminate" were used to apply to mode of action/mechanistic qualitative information.

Table 3. Integration of Evidence

Table 3. Summary of evidence integration for target organ systems

_	_	
Target Organ System	Overall	Comments
Neurological	Sufficient	Evidence across all three data streams; historical use as an anesthetic.
Kidney	Sufficient	Evidence across all three data streams; GSH conjugation to toxic metabolites consistent with proximal tubule effects.
Hepatic	Sufficient	Evidence across all three data streams; weak human evidence.
Reproductive	Sufficient – (males)	Plausible testicular effects from all three data streams; none for females.
Developmental	Sufficient (weak)	Evidence from all three data streams for growth/development, Evidence for terrata considered insufficient (no evidence of terrata from inhalation exposures (human or animal); growth and reductions in offspring observed (oral).
Immune	Sufficient	Autoimmunity, immunosuppression
Kidney cancer	Sufficient	Site of cancer (proximal tubule) and potential carcinogen concordant.
Non-Hodgkin's Lymphoma	Insufficient	Consistency lacking in overall evidence.
Liver cancer	Insufficient	Relevance of animal evidence questionable.
Repro., lung, and other cancers	Insufficient	Variation in metabolism of metabolites in lung of rodents.

Dose-response

- Is there sufficient dose-response information to derive an inhalation POD?
 - Within animal and human LOEs
 - For each effect domain with sufficient evidence of hazard
- Scatter diagrams help support benchmark development:
 - Visualize variation potentially due to study design (species, exposure pathway, specific endpoint)
 - Suitable dose-response (i.e., multiple doses, exclude unbounded no-observed-adverse-effect level (NOAEL)/ lowest-observed-adverseeffect level (LOAEL))
 - Adequacy for Benchmark dose modeling (Frequentist or Bayesian)
 - Identify candidate PODs/key studies
- If inhalation data limited, supporting evidence sought from oral studies:
 - Reproductive
 - Developmental
 - Immune

Scatterplots of Studies (Neurological Effects)

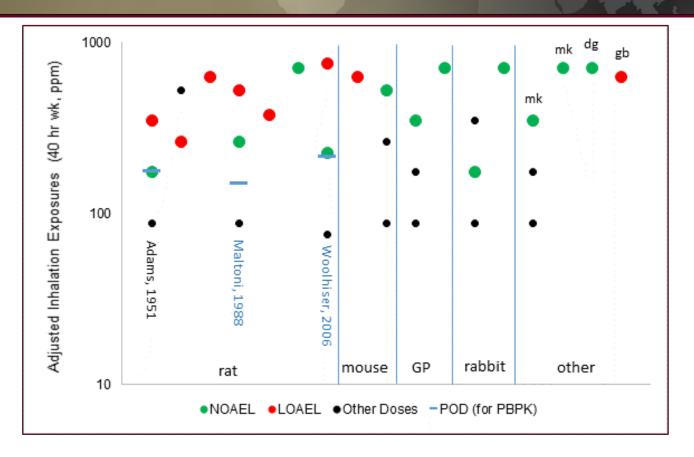


Figure 3. Neurological Effects. Comparison of exposures for neurological effects in a range of rodent inhalation studies with those selected as PODs. Exposure concentrations were time-adjusted for equivalence to a 40 h/wk for auditory and psychomotor effects, with the exception of visual and learning/memory effects which demonstrated greater reliance on exposure concentration rather than duration; therefore, concentrations were not adjusted to 40 h/wk for these effects. NOAEL values are represented with green circles, LOAEL values are red circles, and other exposure concentrations are black dots. All studies carried forward for PBPK analysis (Appendix B) are identified by name, with those suitable for BMD analysis further highlighted with blue text. Annotations within the graph indicate the animal model used (r: rat; gp: guinea pig; rb: rabbit) and type of endpoint measured (auditory, psychomotor, visual, learning/memory, sciatic nerve). See Tables 11 and 12 for HEC values derived from these studies as well as the overall selected OEL value for neurological effects; note that the blue lines identifying exposure derived PODs from selected studies are for comparison only, and these values were not used further for HEC development (see Appendix B).

Scatterplots of Studies (Kidney Effects)

Figure 4. Kidney Effects. Comparison of kidney effects in a range of animal models due to inhalation exposures including those selected as PODs. Data from five animal model species shows comparison between exposure(s) and effects. Exposure concentrations were all adjusted to 40 h/wk for comparison purposes. NOAEL (green circles), LOAEL (red circles), other exposure concentrations (black dots). All PODs carried forward for PBPK analysis (Appendix B) are identified by name, with those suitable for BMD analysis further highlighted in blue text. Annotations within the graph indicate the animal model used (rat, mouse, GP: guinea pig, rabbit, other (mk = monkey, dg = dog, and gb=gerbil). See Tables 11 and 12 for HEC values derived from these studies as well as the overall selected OEL value for kidney; note that the blue lines identifying exposure derived PODs from selected studies are for comparison only, and these values were not used further for HEC development (see Appendix B).

Scatterplots of Studies (Reproductive Effects)

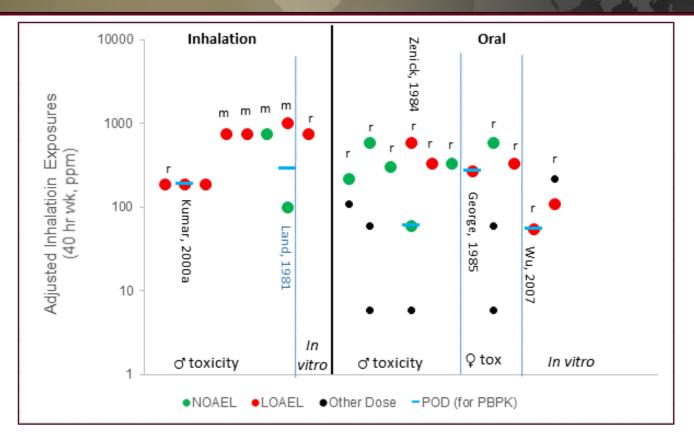


Figure 6. Reproductive Effects. Comparison of experimental studies by exposure route and sex. *In vitro* data are included for comparison purposes only. Included in dose-response analysis and derivation of candidate PODs for reproductive effects from both inhalation and oral exposures. Oral values were adjusted according to the methods and assumptions used in Appendix C. Inhalation exposure concentrations were adjusted to 40 h/wk, oral exposures were adjusted to 5 d/wk. NOAEL (green circles), LOAEL (red circles), other exposure concentrations (black dots). All PODs carried forward for PBPK analysis (Appendix B) are identified by name, with those suitable for BMD analysis further highlighted in blue text. Annotations within the graph indicate the animal model used (r: rat; m: mouse) and type of endpoint measured (male toxicity, *in vitro* effects, and female toxicity). See Tables 11 and 12 for HEC values derived from these studies as well as the overall selected OEL value for reproductive effects; note that the blue lines identifying exposure derived PODs from selected studies are for comparison only, and these values were not used further for HEC development (see Appendix B).

PBPK Modelling

- Derived human equivalent concentrations (HECs) for PODs using PBPK model:
 - Modeling support provided by the Air Force Research Laboratory (AFRL).
 - Update of harmonized TCE model developed with EPA.
 - BMD modeling with subsequent Uncertainty Factors (UFs) (Bayesian) performed on internal rodent dose metrics.
 - Initial rodent exposures adjusted to 40-hour week used for comparison purposes only (shown in Tables 11 and Appendix B).

TCE PBPK Model

- The AFRL previously worked with the EPA to develop a harmonized PBPK model for TCE:
 - Updated by EPA for use in their IRIS toxicological review.
 - AFRL noted some issues which were addressed prior to this current assessment.
- Modeling support provided by AFRL for the current assessment included:
 - Add code to the model to ensure mass balance in tissue blood flows and volumes.
 - Modify/edit the code to resolve instability in the model.
 - Regenerate the validation figures and re-run the sensitivity analysis.
 - Use the model to predict dose metrics for relevant endpoints for OEL determination for specific predetermined oral and inhalation studies.
- Updating report produced by AFRL "Translation of a Physiologically-Based Pharmacokinetic (PBPK) Model Used to Develop Health Protective Levels for Trichloroethylene" (AFRL-SA-WP-TR-2019-0006).

Table 9. PBPK Rodent Internal Dosimetry

Table 9. Internal rodent dosimetry of TCE from PBPK modeling of the unadjusted POD.

(Note: numbers in bold were further used in HEC development; green text = NOAEL; red text = LOAEL)

Study Name	Species	Sex	Route	Exposure Duration	Critical Effect	Dose(s) Simulated	Simulation	Peak TCE in Blood (mg/L)	TCE AUC Blood (mg hr/L/day)			Total Amount Metabolized by	Peak TCE in
Neurological								, , ,			Total Metabolized	Oxidation	Liver
4.11 0000	5.	F		6 h/d, 5 d/w for	Hearing deficits/loss		6 h/d, 5 d/w	55.8	223	Study Name	(mg/kg ^{0.75} /day)	(mg/kg ^{0.75} /day)	(mg/L)
Albee 2006	Rat	М	- Inhalation	13 w	of cochlear hair cells	800 ppm	for 13 w	50.6	200	Neurological Albee 2006	95.52	95.07	
						50 ppm		1.04	5.95	711000 2000	112.9	112.5	
				8 h/d, 5 d/w for 2,	Decreased	100 ppm	8 h/d, 5 d/w for 6 w	2.24	12.7				
Arito 1994	Rat	М	Inhalation	4, or 6 w	wakefulness	300 ppm	IOF 6 W	11.1	56.8	Arito 1994	19.49	19.45	
							nal dose BMDL is				36.32 90.34	36.27 90.21	
						400 ppm	nar according to	10.2	11.4	Bushnell 1997	90.34	90.21	
						800 ppm		26.6	31.1	Businion 1001	16.59	16.55	
B 4007	5.			414104460	Sensitivity to light		1 h/d for 1 day				22.18	22.12	
Bushnell 1997	Rat	М	Inhalation	1 h/d, 3 d/w for 2 w	stimulus (visual learning)	1200 ppm	1 day	43.7	54.7		26.90	26.82	
					3 /	1600 ppm		61.0	80.8	Crofton 1997	127.8	127.4	
						Estimated inter	nal dose BMDL is	35.6 mg/L			167.9 192.2	166.6 190.0	
						800 ppm		46.1	181		209.9	206.8	
						1600 ppm	6 h/d, 5 d/w	110	476	Jaspers 1993	241.2	237.7	
Crofton 1997	Rat	М	Inhalation	6 h/d, 5 d/w for 1 d, 1 w, 4 w or 13 w	Auditory threshold at 13 wks	2400 ppm	for 13 w	175	790	Kidney			
				1 4, 4 4 01 10 4	at 10 WKS	3200 ppm		240	1114	Adams 1951	56.65	56.59	
						Estimated inter	nal dose BMDL is	70.9 ma/L		14 11 1 4000	58.92	58.85	
Jaspers 1993	Rat	М	Inhalation	18 h/d, 5 d/w for	Auditory threshold	1500 ppm	18 h/d, 5d/w	133	1635	Maltoni 1988	32.72 87.03	32.66 86.92	
-	Rat	IVI	IIIIIalauoii	3 w	Additory trieshold	1500 ppiii	for 3 w	100	1033		131.43	131.06	
Kidney										Woolhiser 2006	26.76	26.73	
Adams 1951	Rat	F	- Inhalation	7 h/d, ~5 d/wk for	Relative kidney	200 ppm	7 h/d, 5 d/w for 6 w (until	6.03	28.4		64.04	63.94	
71441110 1001	rut	М	midiation	6-8 mo	weight	200 рр	periodicity)	5.36	25.7		104.72	104.10	
						100 ppm	7 h/d, 6 d/w	2.11	10.6	Liver	E0.0E	56.59	4.004
					Meganucleocytosis	300 ppm	for 6 w (until	8.51	40.0	Adams 1951	56.65 58.92	58.85	4.331 3.042
Maltoni 1988	Rat	М	Inhalation	7 h/d, 5 d/w for 2 y	(male rat only)	600 ppm	periodicity)	30.3	134	Kjellstrand 1983b	146.4	146.3	0.3001
							nal dose BMDL is	51.0 ma/ka ^{0.75} /c	lav	1,,	146.7	146.6	0.2973
						100 ppm		2.32	9.86				
						300 ppm	6 h/d, 5 d/w	12.5	47.4	Kumar 2001a	57.29	57.20	13.26
Woolhiser 2006	Rat	F	Inhalation	6 h/d, 5 d/w for 4 w	Increased relative kidney weight		for 4 w						
					mandy moight	1000 ppm		72.8	298	Ramdhan 2010	355.1	351.1	94.59
						Estimated inter	nal dose BMDL is	41.0 mg/kg ^{0.75} /d	lay	Woolhiser 2006	422.8 26.76	413.0 26.73	252.12 0.85
Liver										VV00III36I 2000	64.04	63.94	13.50
Adams 1951	Rat	F	- Inhalation	7 h/d, ~5 d/wk for	Relative liver weight	200 ppm	7 h/d, 5 d/w for 6 w (until	6.03	28.4		104.72	104.10	107.24
Additio 1001	rtat	М	minalation	6-8 mo	relative liver weight	200 ppiii	periodicity)	5.36	25.7	Immunological			
16. 11. 1. 1.40001		F		Cont (30 or 120 d)	Relative liver weight	0.7	Continuous	0.790	19.0	Blossom 2017	1.306		
Kjellstrand 1983b	Mouse	М	Inhalation	Int (1-16 h/d, 7 d/w for 30 or 120 d)	in mice (continuous exposure, 30 days)	37 ppm	for 30 d	0.789	18.9	Gilbert 2014	1.508		
Kumar 2001a	Rat	М	Inhalation	4 h/d, 5 d/w for 12 or 24 w	Enlarged fatty hepatocytes	376 ppm	4 h/d, 5 d/w for 7 w (until	13.3	34.9	Griffin 2000	9.150	9.142	
					(via histology)	4000	periodicity)	54.0	445	Gillilli 2000	43.501	43.460	
						1000 ppm	8 h/d, 7d/w	54.9	415		172.717	172.529	
Ramdhan 2010	Mouse	М	Inhalation	8 h/d for 7 d	ALT	2000 ppm	for 7 d	128	979	Kaneko 2000	135.1	134.7	
							nal dose BMDL is						
						100 ppm		2.32	9.86	Sanders 1982	7.868	7.861	
Woolhiger 2006	Dot	F	Inhalatian	6 h/d 5 d/m for 4 ···	Increased relative	300 ppm	6 h/d, 5 d/w for 4 w	12.5	47.4	Woolhigas 2000	8.295	8.288	
Woolhiser 2006	Rat	r	Inhalation	6 h/d, 5 d/w for 4 w	liver weight	1000 ppm		72.8	298	Woolhiser 2006	26.76 64.04	26.73 63.94	
						Estimated inter	nal dose BMDL is	42.5 ma/ka ^{0.75} /c	lav		104.72	104.10	
						The state of the s					197.12	104.10	

		Total Amount	Deale			D l.		
		Metabolized by	Peak TCE in	TCE AUC in	TCE Metabolized	Peak TCE in	TCE AUC in	TCE Metabolized
	Total Metabolized	Oxidation	Liver	Liver (mg-	in Liver		Kidney (mg-	in Kidney
Study Name	(mg/kg ^{0.75} /day)	(mg/kg ^{0.75} /day)	(mg/L)	h/L/d)	(mg/kg ^{0.75} /day)	(mg/L)	hr/L)	(mg/kg ^{0.75} /day)
Neurological	(0 0 - 11	(0 0 - 7)	() /		(0 0)	()	,	(0 0 - 1/
Albee 2006	95.52	95.07						
	112.9	112.5						
Arito 1994	19.49	19.45						
	36.32	36.27						
	90.34	90.21						
Bushnell 1997	9.72	9.70						
	16.59	16.55						
	22.18	22.12						
	26.90	26.82						
Crofton 1997	127.8	127.4						
	167.9	166.6						
	192.2	190.0						
	209.9	206.8						
Jaspers 1993	241.2	237.7						
Kidney Adams 1951	56.65	56.59				7.369	34.62	0.04146
Toel silleny	58.92	58.85				6.545	34.62	0.04146
Maltoni 1988	32.72	32.66				2.569	12.87	0.04005
IVIAILUTII 1900	87.03	86.92				10.389	48.76	0.05220
	131.43	131.06				37.003	163.05	0.07023
Woolhiser 2006	26.76	26.73				2.83247	12.03	0.031
W CONTINUE ZOOD	64.04	63.94				15.2509	57.83	0.043
	104.72	104.10				88.951	363.38	0.060
Liver	2	10 1.10				00.001	000.00	0.000
Adams 1951	56.65	56.59	4.331	17.77	53.07			
	58.92	58.85	3.042	12.76	54.86			
Kjellstrand 1983b	146.4	146.3	0.3001	7.202	41.62			
1	146.7	146.6	0.2973	7.134	41.60			
Kumar 2001a	57.29	57.20	13.26	27.56	53.85			
Ramdhan 2010	355.1	351.1	94.59	669.2	285.5			
	422.8	413.0	252.12	1851.1	337.9			
Woolhiser 2006	26.76	26.73	0.85	3.42	23.98			
	64.04	63.94	13.50	43.76	60.44			
	104.72	104.10	107.24	415.27	99.00			
Immunological								
Blossom 2017	1.306							
Cilhart 2044	4 500							
Gilbert 2014	1.508							
Griffin 2000	9.150	9.142						
GIIIIII 2000								
	43.501 172.717	43.460 172.529						
Kaneko 2000	135.1	134.7						
Randro 2000	155.1	104.7						
Sanders 1982	7.868	7.861						
34/40/0 /302	8.295	8.288						
Woolhiser 2006	26.76	26.73						
	64.04	63.94						
	104.72	104.10						

Table 10. Human Equivalent Concentrations

Table 10. Human equivalent concentration (HEC) exposures modeled at 8 h/d, 5 d/w for 13 w that produce the target internal TCE concentration according to each metric derived in Table 9. (Green text = from NOAEL; red text = from LOAEL; blue text = from BMDS model)

Study Name	Species	Sex	Route	Rodent POD	HEC	(ppm) De	rived fro	m PBPK	Modelling	g of the PO
				(internal dose)		TCE in		AUC in ood	Total M	letabolized
					Male	Female	Male	Female	Male	Female
Neurological										
Albee 2006	Rat	F	Inhalation	50.59 mg/L	1625.0	1699.7	1156.7		352.6	354.2
		М			1492.8	1558.8	1061.5	1061.0	439.9	445.4
Arito 1994	Rat	М	Inhalation	0.410 mg/L	21.2					
Bushnell 1997	Rat	M	Inhalation	35.60 mg/L	1109.0					
Crofton 1997	Rat	М	Inhalation	70.9 mg/L	2007.0					
Jaspers 1993	Rat	М	Inhalation	132.52 mg/L	3554.2	3753.4	6553.3	6536.3	1668.8	1616.7
Kidney										
Adams 1951	Rat	F	Inhalation	56.65 mg/kg ^{0.75} /d	268.3	276.6	214.6	216.9	189.1	186.5
		М			242.7	250.9	196.8	199.4	197.8	195.2
Maltoni 1988	Rat	М	Inhalation	51.03 mg/kg ^{0.75} /d					168.3	
Woolhiser 2006	Rat	F	Inhalation	40.97 mg/kg ^{0.75} /d						132.4
Liver										
Adams 1951	Rat	F	Inhalation	53.1 mg/L (F)	268.3	276.6	214.6	216.9	189.1	186.5
		М		54.9 mg/L (M)	242.7	250.9	196.8	199.4	197.8	195.2
Kjellstrand 1983b	Mouse	F	Inhalation	41.62 mg/kg ^{0.75} /d	40.3	43.4	149.0	152.4	648.8	661.9
	-	М			40.3	43.3	148.7	152.1	650.9	664.1
Kumar 2001a	Rat	М	Inhalation	53.85 mg/kg ^{0.75} /d	506.8	517.6	257.2	258.6	191.6	188.9
Ramdhan 2010	Mouse	М	Inhalation	105.8 mg/kg ^{0.75} /d						
Woolhiser 2006	Rat	F	Inhalation	42.51 mg/kg ^{0.75} /d						
mmunological	rtat	•	minalation	42.51 Hlg/kg /u						
Blossom 2017	Mouse	F	Water	2.96 mg/kg/d						3.7
Gilbert 2014	Mouse	F	Water	3.42 mg/kg/d						4.3
Griffin 2000	Mouse	F	Water	8.1 mg/kg ^{0.75} /d						23.7
Kaneko 2000	Mouse	M	Inhalation	135.1 mg/kg ^{0.75} /d	640.7	656.1	409.6	407.6	571.1	582.2
Sanders 1982	Mouse	F	Water	18.4 mg/kg/d	0.7	0.7	2.7	2.8	23.6	23.0
Saliueis 1902	wouse	M	water	16.4 mg/kg/u	0.7	0.7		2.8	24.9	24.3
Woolhiser 2006	Rat	F	Inhalation	42.7 mg/kg ^{0.75} /d	0.7	0.7	2.7	2.0	24.9	135.6
	ıval	T.	ıı ıı ıaıdlıUİİ	42.7 mg/kg****/d						133.0
Reproductive	Mauas		Diet	7E0 malleal -	1E 1 F	160.0	200.0	202.4	2000.0	2546.0
George 1985	Mouse	M	Diet	750 mg/kg/d	154.5	162.2	200.6	203.1	2696.0	2546.0
Kumar 2000a	Rat	M	Inhalation	376 ppm	506.8	517.6	257.2	258.6	191.6	188.9
Land 1981	Mouse	M	Inhalation	89.2 mg/kg ^{0.75} /d	4.0	5.0	40.0	40.4	323.5	400.0
Wu 2007	Rat	F	Water	66 mg/kg/d	4.8	5.2	18.3	19.1	139.1	136.3
Zenick 1984	Rat	М	Water	100 mg/kg/d					46.9	
Developmental	Marra	_	10/-4	0.00						0.7
Blossom 2017	Mouse	F	Water	2.96 mg/kg/d	4450.4	4004.0	4074.0	4074.4	500.0	3.7
Carney 2006	Rat	F	Inhalation	124 mg/kg ^{0.75} /d	1159.4	1204.0	1074.8	1074.4	502.3	510.7
Cosby 1992	Mouse	F	Gavage	240.2 mg/kg/d	540.2	551.9	81.3	84.2	282.9	282.1
Fisher 2001	Rat	F	Gavage	500 mg/kg/d	3343.8		1271.2	1273.8	840.8	853.1
Healy 1982	Rat	F	Inhalation	25.4 mg/kg ^{0.75} /d	108.9	115.7	72.4	75.1	79.6	77.7
Isaacson 1989	Rat	F	Water	11.1 mg/kg ^{0.75} /d						32.7
Manson 1984	Rat	F	Gavage	66.1 mg/kg ^{0.75} /d	783.0	805.2	157.4	160.7	225.7	223.6
Narotsky 1995	Rat	F	Gavage	11.8 mg/kg ^{0.75} /d						34.9
Schwetz 1975	Mouse	F	Inhalation	193.4 mg/kd ^{0.75} /d	399.2	408.2	449.1	446.3	1068.2	1069.9
Schwetz 1975	Rat	F	Inhalation	112.2 mg/kg ^{0.75} /d	448.8	458.4	465.9	462.8	439.9	445.4

Study Name		· ·		HEC	(ppm) Derived	from P	BPK Mo	delling	of the P	OD		_	
,	Metabo	Amount lized by lation		TCE in		AUC in iver	Metabo	CE olized in ver		TCE in dney		AUC in dney	Meta	FCE bolized (idney
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Femal
Neurological														
Albee 2006	919.4	839.8												
	1314.4	1161.7												
Arito 1994														
Bushnell 1997														
Crofton 1997														
Jaspers 1993	>30,000	>30,000												
Kidney														
Adams 1951	292.5 319.9	307.2 333.7								222.5 201.5			3.9 4.6	4.0 4.6
Maltoni 1988													5.1	
Woolhiser 2006														2.1
Liver														4.1
Adams 1951	292.5	307.2	231.1	209.6	220.2	195.8	292.8	307.0						
Audilio 1991	319.9	333.7	201.2	181.6	192.7		315.4	328.9						
Kjellstrand 1983b		2364.9	68.9	61.3	152.1		183.6	189.2						
Njelistialiu 1900b														
I/ 0004 -	2457.1			60.9	151.5		183.5	189.0						
Kumar 2001a	299.7	314.3	369.8	342.6	263.4	235.6	302.5	316.5						
Ramdhan 2010							1301.0							
Woolhiser 2006								196.5						
Immunological														
Blossom 2017														
Gilbert 2014														
Griffin 2000														
Kaneko 2000	1973.8	1771.7												
Sanders 1982	25.7	25.1												
	27.1	26.5												
Woolhiser 2006														
Reproductive														
George 1985		>30,000												
Kumar 2000a	299.7	314.3												
Land 1981														
Wu 2007	172.0	176.4												
Zenick 1984														
Developmental														
Blossom 2017														
Carney 2006		1419.6												
Cosby 1992	634.2	607.1												
Fisher 2001		>30,000												
Healy 1982	89.0	87.4												
Isaacson 1989														
Manson 1984	416.5	421.7												
Narotsky 1995														
Schwetz 1975	>30,000	>30,000												
Schwetz 1975	1319.5	1165.9												

Table 12. Uncertainty Factor Application

Table 12. Conversion of HECs to candidate occupational exposure levels via application of Bayesian uncertainty factors.

12. 0011	version c	/I I I I I I I	<u> </u>	10 (,an	uiuc	110				Factor		<u>sui c</u>	ICVCIS	via app	olication of Bayesian	unce	itallity is
Study	Human Equivalent Concentration	In(HEC)	UFs	σ_{UFS}	UFA	σ _{UFA}	UF _H						σ_{UFD}	ÚF	Composite UF (Bayesian)	Notes	In(OEL)	Occupational Exposure Level
Neurological																		
Albee 2006 Arito 1994	1493 ppm 21.2 ppm	7.309 3.052	10 1	1.4 0	3	0.668 0.668	3	0.668 0.668	1	0	0	1 1	0	100 10	16.1 4.7	UF _S =1; effect is not time dependent and is reversible with 24h	4.53 1.50	93 ppm 4.5 ppm
Bushnell 1997	1109 ppm	7.011	10	1.4	3	0.668	3	0.668	1	0	0	1	0	100	16.1		4.23	69 ppm
Crofton 1997	2007 ppm	7.604	10	1.4	3	0.668	3	0.668	1	0	0	1	0	100	16.1		4.83	125 ppm
Jaspers 1993	3554 ppm	8.176	10	1.4	3	0.668	3	0.668	1	0	0	1	0	100	16.1		5.40	221 ppm
Kidney																		
Adams 1951	187 ppm	5.231	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7		3.68	40 ppm
Maltoni 1988	168 ppm	5.124	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7		3.57	36 ppm
Woolhiser 2006	132 ppm	4.883	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7	UF _S =1; see Kjellstrand 1983b	3.33	28 ppm
Liver																		
Adams 1951	293 ppm	5.680	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7		4.13	62 ppm
Kjellstrand 1983b	184 ppm	5.215	1	0	3	0.668	3	0.668	10	1.504	0.531	1	0	100	26.8	UF _S =1; Rel Liver/Kidney weights at 120d not higher than at 30d.	1.93	6.9 ppm
Kumar 2001a	303 ppm	5.714	1	0	3	0.668	3	0.668	10	1.504	0.531	1	0	100	26.8	-	2.43	11 ppm
Ramdhan 2010	1301 ppm	7.171	10	1.4	3	0.668	3	0.668	1	0	0	1	0	100	16.2		4.39	81 ppm
Woolhiser 2006	197 ppm	5.281	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7	UF _S =1; see Kjellstrand 1983b	3.73	42 ppm
Immunological																		
Blossom 2017	3.73 ppm	1.316	1	0	3	0.668	2	0.421	1	0	0	1	0	6	3.7	UFH=2; autoimmune prone strain	0.02	1.0 ppm
Gilbert 2014	4.3 ppm	1.459	1	0	3	0.668	2	0.421	1	0	0	1	0	6	3.7	UF _H =2; autoimmune prone strain	0.16	1.2 ppm
Griffin 2000	23.7 ppm	3.165	1	0	3	0.668	2	0.421	1	0	0	1	0	6	3.7	UF _H =2; autoimmune prone strain	1.87	6.5 ppm
Kaneko 2000	571 ppm	6.347	10	1.4	3	0.668	2	0.421	10	1.504	0.531	10	1.4	6000	166.9	UF _H =2; autoimmune prone strain, UFD=10; only 2 inhalation studies	1.23	3.4 ppm
Sanders 1982	23.0 ppm	3.135	1	0	3	0.668	3	0.668	10	1.504	0.531	1	0	100	26.8		-0.15	0.9 ppm
Woolhiser 2006	136 ppm	4.910	10	1.4	3	0.668	3	0.668	1	0	0	10	1.4	1000	37.0	UFD=10; only 2 inhalation studies	1.30	3.7 ppm
Reproductive																		
George 1985	2696 ppm	7.900	1	0	3	0.668	3	0.668	10	1.504	0.531	1	0	100	26.8	UF _S =1; sperm assessed at the end of the cohabitation period	4.61	101 ppm
Kumar 2000a	192 ppm	5.257	1	0	3	0.668	3	0.668	10	1.504	0.531	1	0	100	26.8		1.97	7.2 ppm
Land 1981	324 ppm	5.779	10	1.4	3	0.668	3	0.668	1	0	0	1	0	100	16.1		3.00	20 ppm
Wu 2007	136 ppm	4.913	1	0	3	0.668	3	0.668	10	1.504	0.531	1	0	100	26.8	UF _S =1; exposed throughout sensitive period of oocyte maturation	1.63	5.1 ppm
Zenick 1984	153 ppm	5.030	10	1.4	3	0.668	3	0.668	1	0	0	1	0	100	4.9		2.25	9.5 ppm
Developmental																		
Blossom 2017	3.73 ppm	1.316	1	0	3	0.668	3	0.668	10	1.504	0.531	1	0	100	26.8		-1.97	0.14 ppm
Carney 2006	511 ppm	6.236	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7		4.68	108 ppm
Cosby 1992	282 ppm	5.642	10	1.4	3	0.668	3	0.668		0	0	1	0	100	16.1		2.86	18 ppm
Healy 1982	77.7 ppm	4.353	1	0	3	0.668	3	0.668		1.504	0.531	1	0	100	26.8		1.07	2.9 ppm
Isaacson 1989	32.7 ppm	3.487	1	0	3	0.668	3	0.668		1.504	0.531	1	0	100	26.8		0.20	1.22 ppm
Manson 1984	224 ppm	5.412	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7		3.86	47 ppm
Narotsky 1995	34.9 ppm	3.552	1	0	3	0.668	3	0.668		0	0	1	0	10	4.7		2.00	7.4 ppm
Schwetz 1975 (m)	1070 ppm	6.975	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7		5.42	226 ppm
Schwetz 1975 (r)	445 ppm	6.098	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7		4.54	94 ppm

Flow of Non-Cancer Approach

Table 9. Internal rodent dosimetry of TCE from PBPK modeling of the unadjusted POD. (Note: numbers in bold were further used in HEC development; green text = NOAEL; red text = LOAEL)

Study Name Neurological	Species	Sex	Route	Exposure Duration	Critical Effect	Dose(s) Simulated	Simulation	Peak TCE in Blood (mg/L)	TCE AUC in Blood (mg- h/L/d)
Albee 2006	Rat	F M	Inhalation	6 h/d, 5 d/w for 13 w	Hearing deficits/loss of cochlear hair cells	800 ppm	6 h/d, 5 d/w for 13 w	55.80 50.59	222.8 200.4
Arito 1994	Rat	М	Inhalation	8 h/d, 5 d/w for 2, 4, or 6 w	Decreased wakefulness	50 ppm 100 ppm 300 ppm	8 h/d, 5 d/w for 6 w	1.04 2.23 11.10	5.95 12.68 56.83

Table 10. Human equivalent concentration (HEC) exposures modeled at 8 h/d, 5 d/w for 13 w that produce the target internal TCE concentration according to each metric derived in Table 9. (Green text = from NOAEL; red text = from LOAEL; blue text = from BMDS model)

Study Name	Species	Sex	Route	Rodent POD	Adjusted external	HEC	(ppm) De	rived fro	m PBPK	Modelling of the POD		
				(internal dose from Table 9)	exposure (for comparison)		Peak TCE in Blood		AUC in ood	Total N	Metabolized	
						Male	Female	Male	Female	Male	Female	
Neurological												
Albee 2006	Rat	F	Inhalation	50.59 mg/L	600 ppm	1625.0	1699.7	1156.7	1157.5	352.6	354.2	
		M				1492.8	1558.8	1061.5	1061.0	439.9	445.4	
Arito 1994	Rat	М	Inhalation	0.410 mg/L	80.7 ppm	21.2						

BMDL

Table 12. Conversion of HECs to candidate occupational exposure levels via application of Bayesian uncertainty factors.

									Uncer	tainty	Factor	(UF)						
Study	Human Equivalent Concentration	In(HEC)	UFs	σ _{UFS}	UFA	GUFA	UF _H	σ _{UFH}	UFL	HUFL	OUFL	UFD	GUFD	ÜF	Composite UF (Bayesian)	Notes	In(OEL)	Occupational Exposure Level
Neurological																		
Albee 2006	1493 ppm	7.309	10	1.4	3	0.668	3	0.668	1	0	0	1	0	100	16.1		4.53	93 ppm
Artto 1994	21.2 ppm	3.052	1	0	3	0.668	3	0.668	1	0	0	1	0	10	4.7	UF _s =1; effect is not time dependent and is reversible with 24h	1.50	4.5 ppm

OEL (Bold)

Cancer Risk Assessment

- Both human and animal LOEs provide sufficient evidence of association between TCE exposure and kidney cancer:
 - Evidence from animal studies is less consistent than human studies.
 - Human kidney cancer demonstrates exposure-response trend.
 - Human LOE used for dose response assessment:
 - One high quality study available (Charbotel et al. 2006).
 - Case-control study, renal carcinoma.
 - Job matrix related to average level of exposure (low/med/high).
- EPA 2011 no-threshold linear regression of Odds Ratio (OR) (est. of Relative Risk (RR) of Renal Cell Carcinoma (RCC) vs. cumulative exposure (ppm x yrs):
 - Slope 0.001205 (95% Upper Confidence Level (UCL) 0.002554).
- Suggestion of threshold effects based on metabolism and high dose effects.

Cancer Risk Assessment

- Lifetable analysis to calculate extra risk from occupational exposure:
 - SEER database: age-dependent RCC incidence rates (R_x)
 - Background RCC rate $(R_0) = 0.01074$
 - Extra risk $(R_x-R_o)/(1-R_o) = 7.86E-04$; Relative Risk $R_x/R_o = 1.0724$
- POD determined based on 1% extra risk (assumed risk/ unit risk):
 - Consistent with EPA 2011, Guidelines for Cancer Risk Assessment
 - Effective Concentration for 1% Extra Risk (EC_{01}) = 26.97 ppm
 - Lower Effective Concentration (LEC₀₁) = 12.73 ppm

Cancer Risk Assessment

Table 6. Extra risk calculation for renal cell carcinoma due to occupational exposure to 1 ppm TCE

		1		1		1		occupation	iai expos		ppiii icr				
A	В	С	D	E	F	G	Н	ı	J	K	L	M	N	0	P
						Prob. of	l	Cond. prob. of				Exposed all	Exposed	Expos ed	Exposed
Interval		All cause	RCC	All cause	1	surviving	cancer	ı	duration mid		Expos ed	cause	prob. of	prob. Of	cond. prob. o
number	Age	mortality (x	1	hazard rate	_	up to	hazard rate		interval	mid interval			surviving	surviving up to	ı
(i)	interval	10^5/yr)	(x 10 ⁵ /yr)			interval (S)	(h)	interval (Ro)	(xtime)	(x dos e)	rate (hx)	(h*x)	interval (qx)	interval (Sx)	interval (Rx)
1	<1	685.2	0	0.0069	0.9932	1.0000	0.000000	0.000000	0	0	0.000000	0.0069	0.9932	1.0000	0.000000
2	1-4	29.9	0	0.0012	0.9988	0.9932	0.000000	0.000000	0	0	0.000000	0.0012	0.9988	0.9932	0.000000
3	5-9	14.7	0	0.0007	0.9993	0.9920	0.000000	0.000000	0	0	0.000000	0.0007	0.9993	0.9920	0.000000
4	10-14	18.7	0.1	0.0009	0.9991	0.9913	0.000005	0.000005	0	0	0.000005	0.0009	0.9991	0.9913	0.000005
5	15-19	66.1	0.1	0.0033	0.9967	0.9903	0.000005	0.000005	0	0	0.000005	0.0033	0.9987	0.9903	0.000005
6	20-24	94	0.2	0.0047	0.9953	0.9871	0.000010	0.000010	0	0	0.000010	0.0047	0.9953	0.9871	0.000010
7	25-29	96	0.7	0.0048	0.9952	0.9824	0.000035	0.000034	2.5	2.5	0.000035	0.0048	0.9952	0.9824	0.000035
8	30-34	107.9	1.6	0.0054	0.9946	0.9777	0.000080	0.000078	7.5	7.5	0.000082	0.0054	0.9946	0.9777	0.000080
9	35-39	151.7	3.2	0.0076	0.9924	0.9725	0.000160	0.000155	12.5	12.5	0.000165	0.0076	0.9924	0.9725	0.000160
10	40-44	231.7	6.3	0.0116	0.9885	0.9651	0.000315	0.000302	17.5	17.5	0.000329	0.0116	0.9885	0.9651	0.000316
11	45-49	352.3	11	0.0176	0.9825	0.9540	0.000550	0.000520	22.5	22.5	0.000582	0.0176	0.9825	0.9540	0.000550
12	50-54	511.7	17.3	0.0256	0.9747	0.9373	0.000865	0.000801	27.5	27.5	0.000926	0.0256	0.9747	0.9373	0.000857
13	55-59	734.8	26.2	0.0367	0.9639	0.9137	0.001310	0.001175	30	30	0.001410	0.0368	0.9638	0.9138	0.001265
14	60-64	1140.1	36.2	0.0570	0.9448	0.8807	0.001810	0.001549	30	30	0.001949	0.0571	0.9445	0.8805	0.001668
15	65-69	1727.4	44.6	0.0864	0.9173	0.8319	0.002230	0.001777	30	30	0.002401	0.0865	0.9171	0.8316	0.001913
16	70-74	2676.4	49	0.1338	0.8747	0.7831	0.002450	0.001750	30	30	0.002638	0.1340	0.8746	0.7627	0.001883
17	75-79	4193.2	51.6	0.2097	0.8109	0.6875	0.002580	0.001554	30	30	0.002778	0.2099	0.8107	0.6670	0.001671
18	80-84	6717.2	44.4	0.3359	0.7147	0.5412	0.002220	0.001021	30	30	0.002390	0.3360	0.7148	0.5408	0.001098
						0.3868	Ro=	0.010735951						Rx=	0.011513282
etro rick	- (Dv De	\//1.Pa\ =	7.98E-04												

Extra risk = (Rx-Ro)/(1-Ro) = 7.88E-04 Relative Risk = Rx/Ro = 1.072404

Notes: Column A: interval index number (i).

Column B: 5-year age interval (except <1 and 1-4) up to age 85.

Column C: all-cause mortality rate for interval i (x 105/year) (2004 CDC data).

Column D: RCC incidence rate for interval i (x 105/year) (2001-2005 SEER data).

Column E: all-cause hazard rate for interval i (h*i) = all-cause mortality rate × number of years in age interval.

Column F: probability of surviving interval i without being diagnosed with RCC (gi) = e^{-h^2}

Column G: probability of surviving up to interval i without having been diagnosed with RCC (Si) IS1 = 1: Si = Si-1 × qi-1, for i > 11.

Column H: RCC incidence hazard rate for interval i (hi) = RCC incidence rate × number of years in interval.

Column I: conditional probability of being diagnosed with RCC in interval $i = (hilh^2i) \times Si \times (1-qi)$ (i.e., conditional upon surviving up to interval i without having been diagnosed with RCC).

Column J: exposure duration (in years) at mid-interval (xtime).

Column K: cumulative exposure mid-interval (xdose) = exposure level (i.e., 1 ppm) × xtime.

Column L: RCC incidence hazard rate in exposed people for interval i (ηχι) = hi × (1 + β × χdose), where β = 0.001205 for MLE, and β = 0.002554 for UCL. The analysis presented in Table 7 is of UCL

risk; however Table 7 includes both UCL and MLE risk.

Column M: all-cause hazard rate in exposed people for interval $i(h^*xi) = h^*i + (hxi - hi)$.

Column N: probability of surviving interval i without being diagnosed with RCC for exposed people $(qxi) = e^{-h^2d}$.

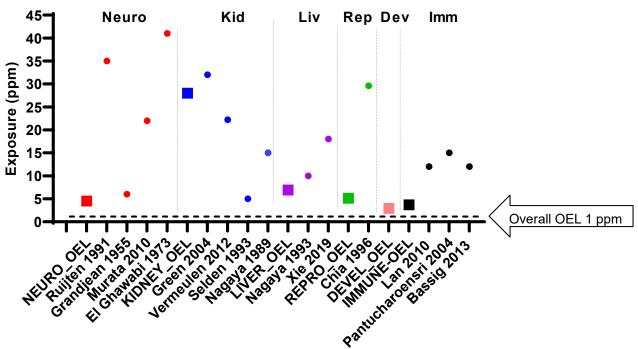
Column 0: probability of surviving up to interval i without having been diagnosed with RCC for exposed people (Sxi) [Sx1 = 1; Sxi = Sxi-1 × qxi-1, for i > 1].

Column P: conditional probability of being diagnosed with RCC in interval i for exposed people = $(hxilh^*xi) \times Sxi \times (1-axi)$.

Final OEL Values

Table 14. Occupational Exposure Level for each of the health effects domains

Domain	Rat POD* (ppm)	HEC (ppm)	RSC (OEL; ppm)	RSC (OEL; mg/m ³)	Critical Effect
Neurological	80.7	21.2	4.5	24	wakefulness
Kidney	214	132	28.0	150	kidney weight
Liver	155	184	6.9	37	liver weight
Reproductive	54.5	136	5.1	27	In vitro fertilization of oocytes
Developmental	70	77.7	2.9	16	resorptions, fetal weight
Immunological	193	136	3.3	20	decreased PFC response
Cancer (10 ⁻² Risk) 30y			130	700	Kidney
Cancer (10 ⁻² Risk) 45y			61	327	Kidney
Cancer (10 ⁻³ Risk) 30y			13	70	Kidney
Cancer (10 ⁻³ Risk) 45y			6.1	32.7	Kidney
Cancer (10-4 Risk) 30y			1.3	7.0	Kidney
Cancer (10-4 Risk) 45y			0.6	3.3	Kidney


^{*}This value is the 40 hr week adjusted rodent exposure (See Table 11) for comparison to the HEC. See Appendix B and Table 9 for actual rodent PODs and HEC derivations.

OEL Values Compared to Human Exposures

OELs Compared to Human Occ. Exposures (OEL as squares; human exposures as circles)

"The final OEL value based on kidney cancer (dotted line above) is lower than all the non-cancer derived OELs as well as measures of exposure from human studies."

Final Slide

• **DISCUSSION**