Case Study #1 – COVID-19 Research Driven by Public Transit - University Partnerships: Case Study of SEPTA-Drexel Collaboration in Philadelphia

Christopher Sales

Drexel University

EHMI Workshop: Indoor Air Management of Airborne Pathogens: Public Transit

STAR+ Story Format

- S Situation
- T Task(s)
- A Action(s)
- R Result(s)
- + Next step(s)

STAR+ Story Format

- S Situation
- T Task(s)
- A Action(s)
- R Result(s)
- + Next step(s)

Acknowledgement:

James Fox
Formerly Assistant General Manager, System Safety
Southeastern Pennsylvania Transportation Authority (SEPTA)

The Situation

• In Spring of 2020...

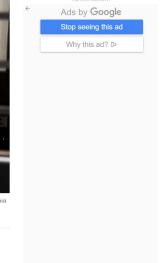
MARCH 19, 2020

SEPTA reducing transit services, all lines to operate on Saturday schedule because of COVID-19

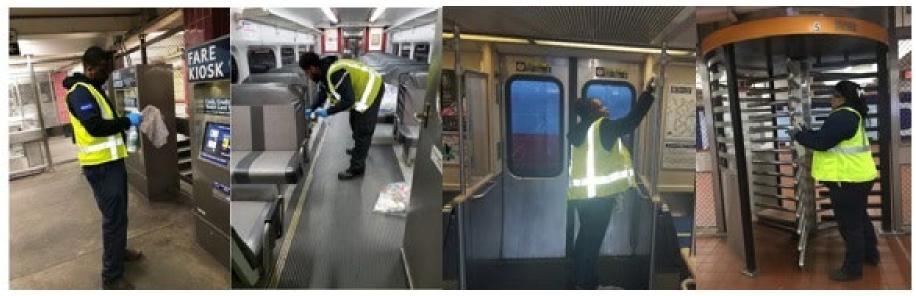
The public transportation changes affecting Regional Rail, bus, subway and trolley lines goes into effect Sunday, March 22

BY VIRGINIA STREVA PhillyVoice Contributor

SEPTA will reduce all transit operations, including buses, Market-Frankford Line, Broad Street Line, trolleys, and Norristown High Speed Line, to a typical Saturday schedule. The new schedule will begin on Sunday, March 22. Ridership on all transit is down by 60%, according to the transit agency.


SEPTA faces an unprecedented financial challenge. A plunge in Pa. Turnpike traffic may make it tougher.

"I don't think any of us know what the new normal is going to look like," said Rich Burnfield, SEPTA's treasurer and deputy general manager



on Wednesday, April 22, 2020. HEATHER KHALIFA / Staff Photographer

The Task

• May 12, 2020 – First discussion between Drexel, SEPTA, and AAPlasma

The Task

Development of Public Transit-University Partnership

- 1. Analysis of <u>customer perceptions</u> that limits their use of public transportation and determination of what factors would reduce their reluctance.
- 2. Examination of <u>potential exposure scenarios and risks</u> (e.g., airborne transmission, contaminated surfaces) using indoor air (in-cabin) modeling within a <u>quantitative microbial risk assessment</u> framework to determine what the most significant "real" risks might be.
- 3. Validation of <u>indicators used to assess effectiveness of decontamination processes</u>. This task will be important in providing agencies with methods to generate qualitative and quantitative data as evidence of their efforts to ensure public safety.
- 4. Development and testing of appropriate and cost-effective <u>disinfection technologies and risk</u> <u>mitigation strategies</u> (e.g., improved ventilation) that will reduce and minimize COVID-19 transmission, that is safe for the public as well as the staff and engineers of SEPTA, and that will be compatible with materials and electrical components housed in their vehicles and facilities.

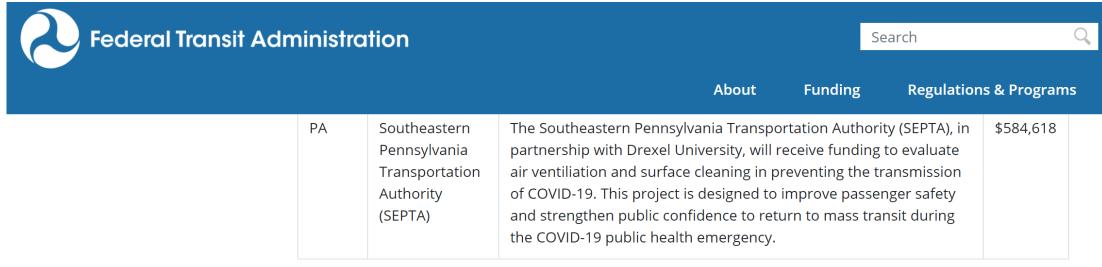
Action(s)

• July 30, 2020 – First SEPTA-Drexel Partnership Meeting

October 30, 2020 – MOU for Partnership fully executed

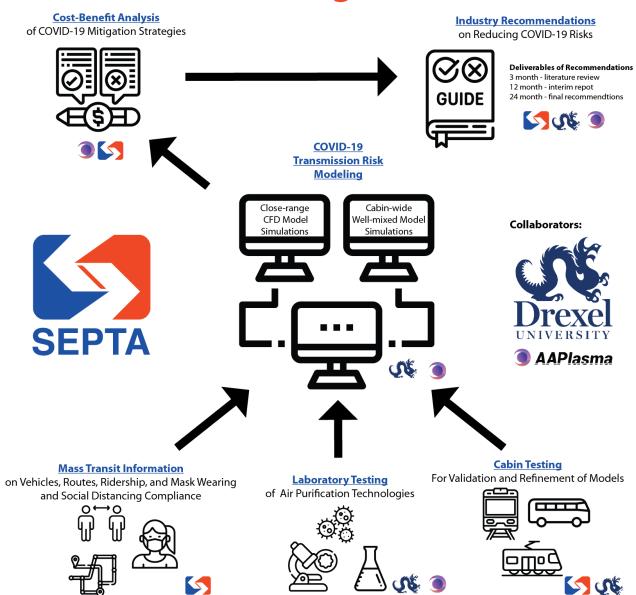
November 2, 2020 – SEPTA and Drexel applied for COVID-19 funding from DOT/FTA

Funding Opportunity

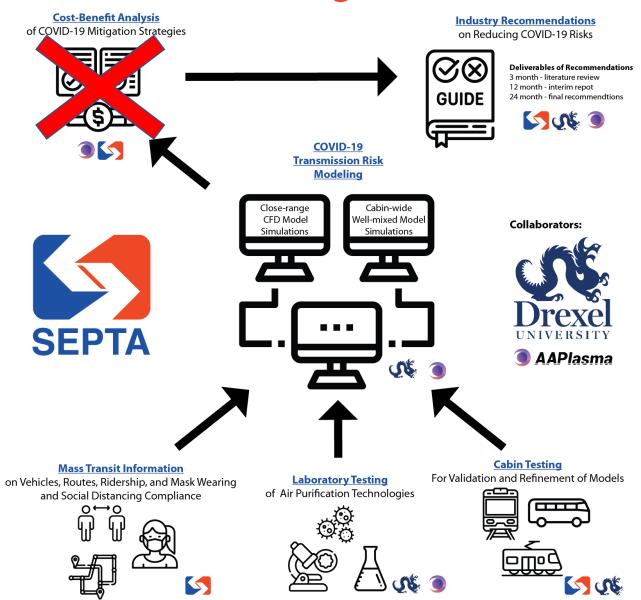

- Public Transportation COVID-19 Research Demonstration Grant Program FY2020 (FTA-2020-015-TRI)
 - Due November 2, 2020
 - Eligible projects will demonstrate innovative solutions to improve the operational efficiencies of transit systems and enhance mobility for their communities in four major areas:
 - vehicle, facility, equipment and infrastructure cleaning and disinfection;
 - exposure mitigation measures;
 - innovative mobility such as contactless payments; and
 - measures that strengthen public confidence in transit services. The total funding available for awards under this NOFO is \$10 million. FTA may supplement this amount if additional funding becomes available.

https://www.transit.dot.gov/notices-funding/public-transportation-covid-19-research-demonstration-grant-program-fy2020-notice

FTA Award Announcement (1/19/21)


U.S. Department of Transportation Announces \$15.8 Million in Grant Awards to 37 Projects Nationwide to Improve Operational Efficiency of Transit Agencies Affected by COVID-19 Public Health Emergency

Tuesday, January 19, 2021



https://www.transit.dot.gov/research-innovation/public-transportation-covid-19-research-demonstration-grant-program-selected

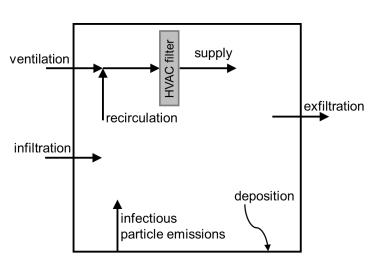
Mass Transit Vehicle Air Ventilation and Purfication Technologies Evaluation

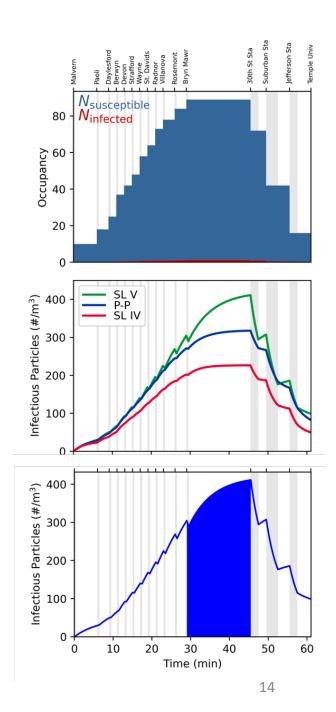
Mass Transit Vehicle Air Ventilation and Purfication Technologies Evaluation

Result(s) to date

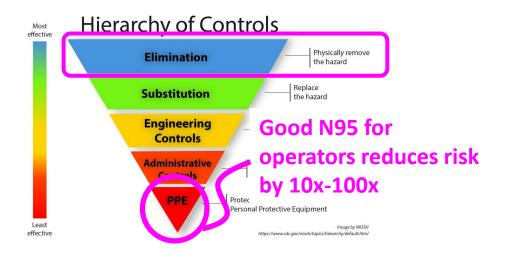
Deriving COVID-19 risks on-board SEPTA vehicles

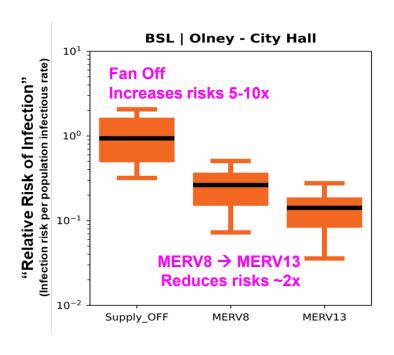
- Approach 1: Well-mixed indoor air quality box models
 - Determine volume-average concentrations & estimate risks
 - Simulations can be scaled and adapted to
 - Assess different vehicles/routes & engineering controls
 - Assess evolution of risks over time during a trip
 - Useful for a statistical examination of outcomes


Research Scientist Professor **Bryan Cummings**



Michael Waring


Professor Charles N. Haas



Result(s) to date

- Deriving COVID-19 risks on-board SEPTA vehicles
 - Approach 1: Well-mixed indoor air quality box models
 - Current Progress: Simulations have generated large amounts of data
 - e.g., to assess impact of HVAC operation
 - e.g., to perform sensitivity analyses

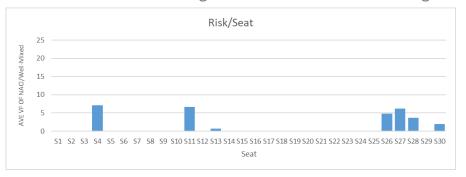
	Pre	dictor	SRC
More strongly increases risk	popi	ulation infectiousness	0.153
	time	onboard	0.151
	# of	pax onboard	0.146
More strongly lowers risk	opei	n-door infiltration rate	-0.014
	recii	culation rate —	-0.04
	fract	tion of pax that are masked	0.054
	cabi	n volume	-0.064
	HVA	C filter efficiency —	-0.064
	vent	ilation rate <	-0.075

Result(s) to date

Deriving COVID-19 risks on-board SEPTA vehicles

- Approach 2: Computation fluid dynamics simulations
 - Used to track distribution of aerosol particles inside vehicles
 - Simulations vary based on ventilation flow rate, number of infectious emitters, and how they are grouped/distribute throughout the vehicle

Associate Professor James Lo



PhD Student Zeinab Bahman Zadeh

Relative Risk in Breathing Zone of Each Seated Passenger

"+" Next Steps

Currently halfway through 2-year FTA COVID project

- Completion of simulations in buses, trolleys, regional rail cars and subway cars
- In-vehicle validation testing of cabin ventilation rates
- Integration and reconciliation of risks predicted by the well-mixed box model and CFD simulations
- In-duct experiments evaluating different airborne disinfection technologies (UV @ 222nm, 254nm 275nm; bipolar ionization; plasma)
 - Are they really needed? Which technologies are effective and safe to use?

"+" Next Steps

Beyond the FTA COVID research project

- Effectively share information from scientific studies with public to regain their trust in the safety of using public transit
- Development of science and industry informed guidelines and standards for ventilation, air filtration, and disinfection technology requirements on mass transit vehicles
- Implore the government that we cannot wait until next pandemic to fund research to address airborne pathogen transmission risks on mass transit

Thank you!

Christopher M. Sales

chris.sales@drexel.edu

@SalesLaboratory
 @ChrisSales

@thesaleslaboratory

