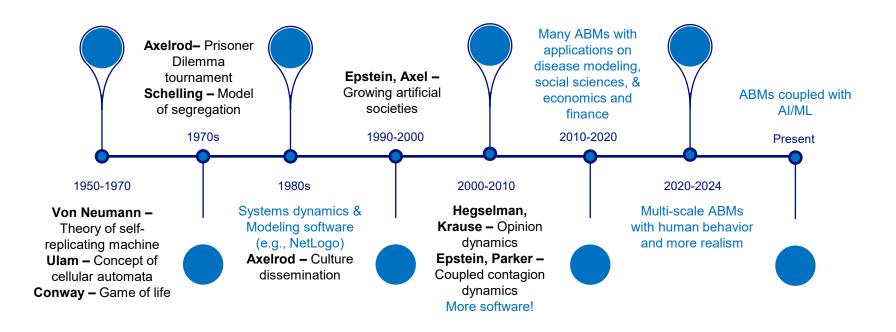
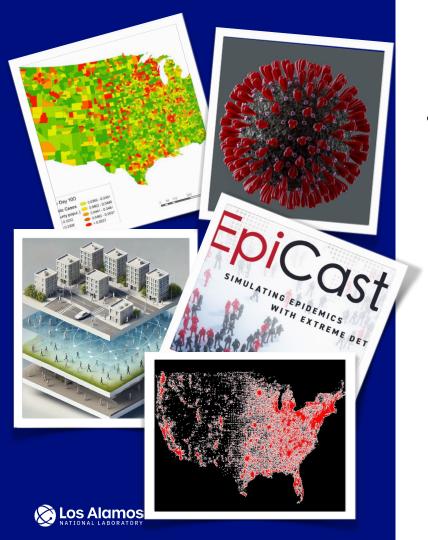


Navigating the Dissemination of Computational Models: Opportunities, Risks, & Responsibilities

Sara Del Valle, Ph.D. **Chief Scientist** Los Alamos National Laboratory


April 3, 2025

LA-UR-25-23154


We are rapidly approaching a time when the most powerful biological designs and threats may not come from nature, but from code

Case Study: Agent-Based Modeling (ABM)



EpiCast ABM: Model Overview

- Simulates respiratory disease transmission across the entire US
 - 324 million agents, demographically matched to 2019 U.S. Census data
 - Fine spatial resolution: explicit geography and mixing venues (e.g., households, workplaces, schools, neighborhoods)
 - Rich demographics: 25 agent-level attributes (e.g., age, household structure, race, ethnicity, school grade)
 - Employment structure: Occupation assigned using 3-digit NAICS codes
 - Interventions: Supports detailed pharmaceutical and non-pharmaceutical policies (e.g., vaccination, masking, closures)

EpiCast Simulation Results

Implications of ABM Results

These models can now generate outputs with real-world biological implications (e.g., identify optimal transmission, characterize underlying distribution of outcomes)

Challenges in Current Biosecurity Guidelines and Journal Practices

Guidelines Scope

- Too narrowly focused on experimental data
- Neglects generative models and in silico outputs

Risk Clarity

- Lack standard definitions to assess risks of in silico research
- Unclear thresholds for evolving security risks

Reproducibility vs. Responsibility

- Journals requirements in conflict with security risks
- Tension between transparency and dissemination practices
- No consensus on tiered access, red teaming, or gating high-risk outputs

The Tianjin Biosecurity Guidelines for Codes of Conduct for Scientists

Advances in the biological sciences bring about wellbeing for humanity, but the same advances could be misused, particularly for the development and proliferation of biological weapons. To promote a culture of responsibility and guard against such misuse, all scientists, research institutions, and governments are encouraged to incorporate elements from the Tianjin Biosecurity Guidelines for Codes of Conduct for Scientists in their national and institutional practices, protocols, and regulations. The ultimate aim is to prevent misuse of bioscience research without hindering beneficial

Biological and Toxin ess towards achieving the UN

al ethics. They have a special that benefit humankind, to s and to guard against the m to the environment.

mestic laws and regulations, piological research, including its and their professional nt and further development

to prevent misconduct in ions of biological sciences, reapons. Measures should biological products, data,

United States Government Policy for Oversight of Dual Use Research of Concern and Pathogens with Enhanced Pandemic Potential

May 2024

Capability-Based Thresholds

- Models, methods, or code that could assist in:
 - Enhancing pathogen virulence or transmissibility
 - Evasion of detection, diagnostics, or countermeasures
 - Design of novel, potentially harmful biological constructs
 - Overcoming containment or security controls
- Algorithms or simulations that can optimize or automate the manufacture, deployment, or targeting of biological, chemical, or nuclear threats

Does the research enable capabilities that could be repurposed for harm?

Exploitation Risk Thresholds

- Published models, datasets, or scenarios that lower the barrier to:
 - Identifying vulnerabilities in human, animal, plant, ecological systems, or infrastructure systems
 - Generating synthesis-read biological sequences with known or potential harms
 - Training or fine-tuning models for malicious purposes (e.g., drug repurposing for toxins, optimal transmission pathways)

Could this work be easily exploited without expert knowledge?

Intent Signaling/Descriptive Misuse Enablers

- Information scenarios that:
 - Describe pathways for misuse, including attack chains or synthetic routes
 - Model societal impacts of specific attacks in ways that suggest optimal timing or targets
 - Frame "what if" threats in ways that could serve as playbooks rather than cautionary tales

Could this inform or inspire malicious actors?

Generative AI Dynamics & Global Security Impacts

I: Linear

II: Exponential

III: Iterative

IV: Discontinuous

More "shots on goal"; automated attempts to use technology for harm, analogous to the progression from muzzle loader to machine gun, e.g. spambots, malware, pathogen or toxin variants.

Exponential production or harmful growth dynamic, e.g. infectious agent, internet worm, scalable manufacturing via biosynthesis. Akin to fission processes, urban or wildland firestorms.

Sustained independent discovery, goal direction with refinement, replication with variation, and/or high-throughput assessment and improvement, especially with physical feedback.

Unforeseen technical advance obtained unilaterally via breakthrough unavailable to USG; e.g. "Sputnik moment," more efficient new architectures, uncontrollable superintelligence.

Global Framework Regulating Nuclear Activities

Preventing Proliferation • Non-Proliferation Treaty (NPT) - 191 states • UN Security Council Resolution 1540 **Reducing Global Risks Monitoring &** Verification • Global Threat Reduction Initiative (GTRI) • IAEA Safeguards Agreements - 178 member states **Controlling Nuclear Banning Nuclear Testing** Trade • Comprehensive Nuclear-Test-Ban Treaty (CTBT) • Nuclear Suppliers Group (NSG) - 48 countries • Zangger Committee

The tools to simulate biology are outpacing the norms for sharing it, It's time we rethink how we assess risk in a computational area

QUESTIONS?

Nuclear vs Biosecurity

Feature	Nuclear	Biosecurity	Al	In Silico Modeling
Risk Clarity	Clear risks and well- defined threat scenarios	Lacks consensus on what constitutes 'risk'	Emerging; risks vary by use case (e.g., LLMs, autonomous systems)	Contextual (depends on biological domain)
Definitions and Scope	Codified in global treaties (e.g., NPT, IAEA)	Fragmented definitions (e.g., DURC, P3CO)	Evolving; no universally accepted terminology	Lacks common definitions for dual-use
Enforcement	Centralized via IAEA	No global enforcement body	No central enforcement; emerging national efforts	None – handled by journals and funders
Global Treaty Body	Yes – IAEA + NPT	No global treaty body	None yet; proposals under discussion (e.g., Al governance summits)	None yet
Dual-Use Control	Export controls (e.g., NSG)	Limited, inconsistent oversight	Mostly voluntary or market- driven; no dual-use framework yet	Ad hoc (especially around model/code sharing)
Verification & Inspection	IAEA inspections and safeguards	Rare, non-standardized	Not applicable or emerging (model audits, evaluations)	None
Response to Violations	UN/IAEA escalation mechanisms	Domestic responses or ad hoc norms	Currently undefined; varies by jurisdiction	Undefined; varies by publication norms

