NATIONAL Sciences ACADEMIES Medicine Medicine

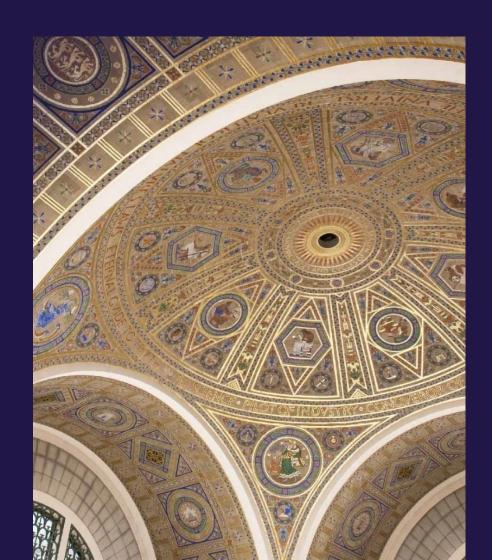
Dr. Rachel A. Meidl, Distinguished Fellow, Rice University

NATIONAL Sciences
Engineering
ACADEMIES Medicine

Microplastics and Health:

Research Priorities, Mitigation Strategies, and Public Communication in the Face of Uncertainties

June 9, 2025 | 11:00 AM-1:00 PM ET



Webinars Recap

Research Gaps/Challenges

And

Key Pathways and Priorities

Standardization and Methodological Limitations

- > No universal protocols for sampling, analysis, or reporting
- ➤ Inconsistent quality assurance/control (QA/QC)
- ➤ Lack of certified reference materials
- Poor reproducibility across labs
- > No centralized data repository

Standardization and Quality Control

- ➤ Harmonize methods for sampling, extraction, and analysis across environmental and biological matrices.
- ➤ Adopt QA/QC protocols aligned with ISO and ASTM standards.
- Develop certified, environmentally realistic reference materials.
- Expand interlaboratory method validation studies.

Standardization and Methodological Limitations

- > No universal protocols for sampling, analysis, or reporting
- ➤ Inconsistent quality assurance/control (QA/QC)
- > Lack of certified reference materials
- > Poor reproducibility across labs
- No centralized data repository

Data Infrastructure and Transparency

- Establish centralized, open-access databases for exposure, toxicity, and health data.
- ➤ Promote use of shared reporting standards and method repositories.
- > Expand platforms like TOMEx and EPA chemical dashboards.

Analytical and Detection Challenges

- ➤ Detection technologies struggle with particles <10-20 microns
- ➤ Analytical tools (Raman, FTIR, GC-MS) face matrix interference
- ➤ High risk of sample contamination
- > Expert interpretation is often needed

Analytical and Detection Innovations

- \succ Advance technologies to detect particles <10 microns, especially <1 $\mu m.$
- ➤ Invest in emerging technologies for improved detection (e.g., microcavity assays, hyperspectral imaging, and nano-flow tools).
- ➤ Leverage AI and machine learning for automated particle identification and data analysis.
- Strengthen collaboration between toxicologists and Analytical chemists to ensure the generation of highquality data

Complexity of Microplastics, Behavior, and Fate

- > Microplastics vary in size, shape, polymer type, aging, and additives
- Chemical complexity and co-exposures
- ➤ Limited knowledge on interaction with biofilms and tissues
- ➤ Lack of understanding about degradation and transport across air, water, and soil
- > Risk assessment frameworks are not suited for complex mixtures

Environmental and Biological Relevance

- > Use weathered, mixed polymer particles to simulate real-world exposure.
- > Study underrepresented matrices such as compost, placenta, brain tissue, and sediment.
- ➤ Investigate how particles interact with biofilms and undergo environmental transformation.
- Collaboratively develop integrated risk assessment approaches that combine exposure, hazard, and physicochemical data for regulatory use (e.g., MARII).

Human Exposure and Health Effects

- > Human exposure estimates vary widely
- ➤ Poor understanding of internal distribution and bioaccumulation
- > Limited epidemiological and prenatal studies
- ➤ Lack of environmental relevance of toxicological models
- > Inconsistency in toxicity studies
- Underutilized occupational exposure data
- > Exposure disparities in vulnerable populations

Exposure and Toxicology Research

- ➤ Improve PBPK models and in vitro platforms to simulate internal distribution and effects.
- Examine dose-response relationships and mechanisms (inflammation, fibrosis, oxidative stress).
- Expand epidemiological and longitudinal cohort studies (e.g., Aurora Project).
- ➤ Prioritize vulnerable populations, including infants and pregnant individuals.

Integration, Collaboration, and Regulatory Gaps

- > Toxicology studies are difficult to align
- ➤ Lack of interdisciplinary coordination (toxicology, chemistry, etc.)
- > Regulations lag behind emerging evidence
- > Insufficient data for setting regulatory thresholds

Interdisciplinary and Cross-Sector Collaboration

- ➤ Foster cross-sector collaboration and partnership between toxicologists, epidemiologists, policy makers, and regulators.
- > Supports the development of standardized terminology.
- > Use lessons from air pollution and research on nanoparticles to shape models.
- > Promote educational outreach and knowledge transfer

