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Overarching principles

1. Data will permeate through all parts of a systems approach to
studying the Earth
* Data cyberinfrastructure is essential

2. Integrated research across disciplines requires collaboration
e Data and model interoperability

3. We can do more if we can build on existing foundations
* Reproducibility and composability



A systems approach to studying
the Earth requires data

Inputs, outputs, products
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* Data are first class research products!
* Funders and publishers are now requiring open data sharing

* Findable: Data have sufficient metadata and a unique, persistent identifier
making data discoverable on the Web

e Accessible: Metadata and data are understandable to humans and machines
and are available via a trusted repository

* Interoperable: Metadata use formal community standards

* Reusable: Data have clear metadata, usage license, and information about
provenance

Wilkinson, M. D. et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific
Data, 3:160018, https://doi.org/10.1038/sdata.2016.18.



https://doi.org/10.1038/sdata.2016.18

New Opportunities for Data Sharing and
Preservation

* Growing landscape of data repositories —
* Functionality for archival/preservation Data®N B

* Many are still very much discipline specific

* Registry of Research Data Repositories now lists
over 2000 repositories (re3data.org)
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Sharing hydrologic data Search. Synthesize. Contribute.
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National Snow and Ice Data Center




Building a Cl for NSF’s Critical Zone
Collaborative Network
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» Data aggregation

» Local data management

* Quality assurance/quality control
* Metadata creation
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Data Submission Portal

» Which repository should | use?

* Which data format?

* What metadata should | provide?

» Should | use a controlled
vocabulary?

« Can | automate this?
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Data Submission
* Metadata Templates
« Data Format Standards
« Controlled Vocabularies
+ Data Upload Templates
« Sample Registration
* Unique Identifier Management

Voo

Need innovative
work here

Repositories for Data and
Research Products

« Permanent data archival and publication
» Access control for embargoed data

» Open access for public datasets

+ Citable data
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+ LiDAR
« High resolution topograpy
« Elevation products
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Other Repositories

Use existing
repositories
here
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Collaborative Investigator Data Workflow

e Easily create a digital instance of a dataset (or model)

* Quickly share it with colleagues (perhaps privately at first)

* Add value through study, collaboration, annotation, and iteration
* Describe with metadata

e Eventually...share publicly or formally Publish (FAIR!)
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What is the role of data repositories in this scientific workflow?




Big Data

* Earth science big data represent challenges
and opportunities
o Extensively used

o Too big to easily move around — collaboration
looks different

o How to mine for information?
o How to simplify size and dimension of data”?

How and when to move from “model driven” research to “data driven” research?

Model Driven:
Earth Process
Science

Physical laws
and principles
(Mass, momentum,
energy, chemistry)

ﬁ

Process Science
(Equations, simulation
models, prediction)

\ Earth System

Data Driven:
Earth Information
Science

Earth

Environment
(Dynamic Earth)

Conditions
(Fluxes, flows, concentrations)

Information Science
(Observations, data models,
visualization)

Ideas adapted from David Maidment
University of Texas at Austin




Summary of Data Challenges

* Existing repositories getting better, but how to choose the right
repository for data?

* How to share data in a way that it can be understood by users?

* FAIR is not easy - the extent to which data are FAIR affects their value
and extent of reuse, FAIR requires committment

 What are the roles that repositories should play in the research
process?

* Big Data — what to keep, where to keep it, (how and when) can we
shrink it?

* Long term sustainability of research data repositories



A systems approach demands
interoperability

Knowledge is generated through the integration of
information from multiple sources

Earth System Cl must address this



EARTHCHEM

Search. Synthesize. Contribute.

Chorover, J., Perdrial, J., Mclntosh, J., Troch, P., Amistadi, M., Losleben, M., Condon, K., Pedron, S.
2018. Jemez River Basin Soil Solution Chemistry 2014 (New Mexico, USA), Version 1.0.

Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/111144. Accessed
2021-02-02.

Repository Interoperability

& HYDROSHARE

Mihalevich, B., J. S. Horsburgh (2017). Grab Sample Data for Dissolved Organic Matter Study
in the Northwest Field Canal in Logan, UT, HydroShare,

https://doi.org/10.4211/hs.a3a9ba772aac4cbad533b35bb6b5fe42

Title: Jemez River Basin Soil Solution Chemistry 2014 (New Mexico, USA) G Tit|o sy Grab Sample Data for Dissolved Organic Matter Study in

Creator(s): Chorover, Jon
Perdrial, Julia
Mclntosh, Jennifer
Troch, Peter
Amistadi, Mary Kay
Losleben, Mark
Condon, Katherine
Pedron, Shawn A

Keyword(s): Coverage Scope: Other

Geographic Location: Valles Caldera, Jemez River Basin, New Mexico

Abstract: Soil solution samples in the Jemez River Basin field sites of the Catalina-Jemez Critical Zone

Observatory (CZO) are collected with the following two types of soil solution samplers: i) Prenart

— Creators # Authors:

the Northwest Field Canal in Logan, UT

Bryce Mihalevich | Jeffery S. Horsburgh

Subject Keywords

Urban | | dissolved organic carbon | | dissolved organic matter
' Keywo rd S # Stormwater water quality excitation emmission matrix

Abstract

This dataset includes grab sample data collected during baseflow and stormflow conditions in the Northwest

Super Quartz suction cups (www.prenart.dk). Prenart suction cups are optimized for all chemistrh . . .
analyses and were installed without addition of Si-slurry to allow for artifact-free Si analyses. Abst ra Ct # Field Canal (NWFC), located in Logan, UT. Grab sample data includes results from samples that were analyzed

Applied suction for each Prenart is ~ 60 kPa. ii) Custom made, fiberglass wick-based passive
capillary wick samplers (PCaps, Perdrial et al. 2012). PCaps are optimized for water flux
determination and sampling for organic carbon, most (non-carbonate) anions and trace metals.

Download File(s): File Name File Size

NM_SoilWater_Chemistry_2014.xIs 455.5 KB

—

Content
Files

using dissolved organic carbon concentration analysis and excitation emission matrix spectroscopy to
determine organic matter concentration and characteristics. Methods used in sample collection and analysis
are described in detail within the methods document included as part of this resource.

Content
= @ sortby~
H % ® & & Learnmore
] Finalized_Data File Folder
Selecta
B GisData File Folder file to see
file type
[3  NwFC_Grabsampli..  pdfFile 165.1KB metadata
B readme.txt plain File 3.1KB



https://doi.org/10.4211/hs.a3a9ba772aac4cba9533b35bb6b5fe42
https://doi.org/10.1594/IEDA/111144

Data Integration is Difficult

* Many research scenarios require
integration of multiple data types across
different Earth science domains

e Data from multiple repositories use
different format, syntax, and semantics

e Common characteristics of
observational data (time, location,
provenance, methods, units) are
described using different constructs
within different systems

Example: Understanding a soil profile’s geochemical
response to extreme weather events requires
integration of hydrologic and atmospheric time series
with geochemical data from soil sample fractions
collected over various depth intervals from soil cores
or pits at different positions on a landscape

Standard information models can help

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

Observations Data Model 2: A community information model for @Cmsmﬂ(
spatially discrete Earth observations

Jeffery S. Horsburgh Anthony K Aufdenkampe Emilio Mayorga ,
Kerstin A. Lehnen Leslle Hsu ¢, Lulin Song ¢, Amber Spackman Jones €,
Sara G. Damlano Davnd G. Tarboton David Valentine ', Ilya Zaslavsky ', "
Tom Whitenack

2 of Civil and Utah Water Research Laboratory, Utah State University, 8200 Old Main Hill
logan, UT 84322-8200, USA
® Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
< Applied Physics Laboratory. University of Washington, 1013 NE 40th Street Seattle, WA 98105-6698, USA
Lmrl t-Doherty Earth Observatory, Columbia University, 61 Route 9W, thsadn NNY 10964-8000, USA
ah Warr Research Laboratory, Utah State University, 8200 Han Hill, Logan, UT 84322-8200, USA
fSan Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive #0505, La Jolla, CA 92093-0505, USA

ARTICLE INFO ABSTRACT

Integrated access to and analysis of data for cross-domain synthesis studies are hindered because
common characteristics of observational data, including time, location, pavenance methods, ndunts

e described differently within different information models, i ding physical implementations and
h nge hmastcrbe neW|frma|o model for sp: y discrete Earth ol hsrvamnscalled
the Dbsrvt Dl Model Version 2 (ODM2) aimed tfclltat ggreateri!mp rability across

and domain cybe infrastructures. ODMZ tegrates concepts from ODM1 and other

ctures to expand capacity to lydescbe tore, manage, and encode
for archival and transfer over (he Interne(. Compared to other systems, it ac-
commodates a w1der range of observational data derived from both sensors and specimens. We describe
the identification of community information requirements for ODM2 and then present the core infor-

mation model a ddemonstra! how it can be formally extended to a modate arange of information
requirements and use cases.
© 2016 The Auth OTs. Publ shed by Elsevier Ltd. This open access article under h CC BY license

(n; [creativecommons.org|licenses/by/4.0/).

Horsburgh, J. S., Aufdenkampe, A. K., Mayorga, E., Lehnert, K. A,, Hsu, L., Song, L., Spackman Jones, A., Damiano, S. G., Tarboton, D. G., Valentine, D., Zaslavsky, ., Whitenack, T. (2016). Observations
Data Model 2: A community information model for spatially discrete Earth observations, Environmental Modelling & Software, 79, 55-74, http://dx.doi.org/10.1016/j.envsoft.2016.01.010
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Model Compatibility and Integration

Transdisciplinary Earth science often requires integration of models from
multiple disciplines

(3) D requests data =]
from E
. (2) B requests data
* Model coupling and model from D = _]
. . E
integration tools have advanced
4) E ret datato D
(OpenMI, ESMF, CSDMS, BMI, etc.)  (VArequests data ) retums datato
. ] =] (5) D returns data to B
* Multiple model coupling approaches
. . (7) C returns data to B
(tight, loose, data centric) 3 =
e Space and time scales are not always e _]

We” matChEd o (6) B requests data fc;’om C

e Semantics at the interfaces between OpenMl “request and reply” data exchange mechanism.
components Component A is the controller/trigger for the simulation.

Buahin, C. A., Horsburgh, J. S. (2018). Advancing the Open Modeling Interface (OpenMl) for integrated water resources modeling, Environmental Modelling & Software, 108, 133-153,
https://doi.org/10.1016/j.envsoft.2018.07.015.



https://doi.org/10.1016/j.envsoft.2018.07.015

Summary of Interoperability Challenges

e Opportunities for interoperability across repositories
* Metadata

Formats/encodings

Vocabularies/semantics

Packaging and delivery

Designing for diversity in data

 Facilitating data integration
e Standard information models could be a preventative
* “Data munging” treats the symptoms of the disease

* Modeling

* How to resolve mismatches in space, time, and semantics (scale and
interpretation)

 Which model coupling approach is effective?



Reproducibility is key

“If | have seen further it is by standing on the shoulders of Giants.”
Isaac Newton, 1625

Building trust in research requires transparency
and reproducibility



How can Cl support reproducibility?

What it means to reproducible How Cl can help (modeling context)

Online
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Seamless

Seamless ’
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Reproducibility
New researcher, same data
“Obtaining consistent results using the same input data, computational
steps, methods, and code, and conditions of analysis by a new
researcher on a new machine”
(National Academies of Sciences Engineering and Medicine, 2019)

Runnability

Same researcher, new machine

v \{

Computational
Environment

. ° Containerization
ool
.\J

e - -

Seamless
data transfers

Model
APIs

Obtaining consistent results using the same input data, computational steps, methods, code and
conditions of analysis on a new machine.

Repeatability

Same researcher, same machine

Obtaining consistent results using the same input data, computational steps, methods, and code on the
original researcher’s machine.

Choi, Y. D, J. L. Goodall, J. M. Sadler, A. M. Castronova, A. Bennett, Z. Li, B. Nijssen,

Essawy, B., J. Goodall, D. Voce, M. Morsy, J. Sadler, Y. D. Choi, D. Tarboton and T. Malik S. Wang, M. P. Clark, D. P. Ames, J. S. Horsburgh, H. Yi, C. Bandaragoda, M. Seul, R.
(2020), A taxonomy for reproducible and replicable research in environmental Hooper and D. G. Tarboton (2021), Toward open and reproducible environmental
modeling, Environmental Modelling & Software, 134:104753, modeling by integrating online data repositories, computational environments, and
https://doi.org/10.1016/j.envsoft.2020.104753 model application programming interfaces, Environmental Modelling & Software,

135:104888, https://doi.org/10.1016/j.envsoft.2020.104888
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Creating and Sharing
Reproducible Analyses

* Reproducible analyses:
Sharing data and code
together in a repository

* Linking repositories with
computational
environments

* Repositories as a gateway

to high performance
computing and cloud
services

— JupyterLab
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Analysis of Weekday Versus Weekend Water use in a College Campus
Residential Building

Import the necessary Python libraries for the analysis

import pandas
import matplotlib.pyplot as plt

Read the CSV data file into a Pandas data frame object

df = pandas.read csv('datalog richards hall.csv', header=1, sep=',',
index_col=0, parse_dates=True,
infer_datetime_format=True, low_memory=False)

First aggregate the incremental flow volume to a total volume for each hourly time step for the whole period
hourlyTotVol = df['IncrementalVolume'].resample(rule='1H', base=0).sum()
Now subset the hourly data by days of the week create a new DataFrame for weekdays and one for weekends

weekday_dat = hourlyTotVol[hourlyTotVol.index.weekday < 5].copy()
weekend_dat = hourlyTotVol[hourlyTotVol.index.weekday >= 5].copy()

Calculate an average volume and standard deviation for each hour of the day by aggregating across days using the groupby function - for both weekday and
weekend

hourlyAvgWeekdayVol = weekday_dat.groupby(weekday_ dat.index.hour).mean()
hourlyAvgWeekendVol = weekend dat.groupby(weekend dat.index.hour).mean()
hourlyWeekdayStDevVol = weekday dat.groupby(weekday dat.index.hour).std()
hourlyWeekendStDevVol = weekend dat.groupby(weekend dat.index.hour).std()

Create an errorbar plot to which | can add all of the data subsets

# Set the default font size for the plot
font = {'size': 16}
plt.rc('font', **font)

# Generate a single plot to which I can add all of the data subsets
fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(1l, 1, 1)

# Create an errorbar plot (lines, point, and errorbars) of the hourly average volumes
plt.errorbar (x=hourlyAvgWeekdayVol.index-0.05, y=hourlyAvgWeekdayVol, yerr=hourlyWeekdayStDevVol,

capsize=3, capthick=0.5, fmt='--', label='Average Hourly Weekday Volumes', marker='o')
plt.errorbar (x=hourlyAvgWeekendVol.index+0.05, y=hourlyAvgWeekendVol, yerr=hourlyWeekendStDevVol,
capsize=3, capthick=0.5, fmt='--', label='Average Hourly Weekend Volumes', marker='s')

# Set the x-axis tic mark locations
ax.set_xlim(-0.5, 23.5)

xmarks = range(0, 23 + 1, 1)
plt.xticks(xmarks)




Summary of Reproducibility Challenges

* What does it mean for computational science to be reproducible?

* How to best link repositories to computation/execution
environments?

* How to build shared access to data and computation?
* How to promote more consistent data workflows and data reuse?

* How to provide the “right” computational environment (e.g., in a
JupyterHub) and how to maintain it over time?

* How to overcome platform and library dependencies?
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A systems approach must bridge
“digital divides”

The gaps between those who have programming, data
science, and computational skills and those who do not




Challenges and Trends in
Environmental Data Science

* Shortage of trained experts

* Engineering and science programs struggle to fit
“data science” into their curriculum

* Programming and computational skills are often
self taught

* Begs for changing our approach to education and
workforce development

e Collaborative teams can build the needed skillsets

 Methodological gaps for real applications

e Lack of guidance for mapping methods to
applications

* Methods for choosing the right data
* Need for development of new methods

Environmental Modelling & Software 106 (2018) 4-12

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at ScienceDirect

Environmental Modelling & Software
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ARTICLE INFO ABSTRACT

Article history: Environmental data are growing in complexity, size, and resolution. Addressing the types of large,
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multidisciplinary problems faced by today's environmental scientists requires the ability to leverage
available data and information to inform decision making. Successfully synthesizing heterogeneous data
from multiple sources to support holistic analyses and extraction of new knowledge requires application
of Data Science. In this paper, we present the origins and a brief history of Data Science. We revisit prior

efforts to define Data Science and provide a more modern, working definition. We describe the new

Keywords:

Data Sdence
Environmental science
Data driven modelling

professional profile of a data scientist and new and emerging applications of Data Science within
Environmental Sciences. We conclude with a discussion of current challenges for Environmental Data
Science and suggest a path forward.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

“Data Science is the science of dealing with data ..." (Naur, 1974)

In recent years, we have observed an increasing popularity of
Data Science methods that seem to be in the focus of many orga-
nizations, including those interested in a better comprehension or

of il I systems. Data Science is already
widely used in business to design successful strategies and policies,
and the economic sector is facing a significant transformation as a
result of the penetration of data-driven innovation in the business
core. We believe that a similar transformation is underway within
many scientific disdplines, among them those within the Envi-
ronmental Sciences, to investigate the benefits that can be realized
through use of appropriate Data Science approaches.

In this paper, we analyze the origins of Data Science as a new
disdpline that is diverse enough to be applied to any domain,
including those within the Environmental Sdences. The potential
of Data Science to advance our knowledge of the laws governing
complex environmental phenomena is enormous. The

* Corresponding author.
E-mail address: karina.gibert@upc.edu (K. Gibert).

https://doiorg/10.1016/j.envsoft2018.04.005
1364-8152/© 2018 Elsevier Ltd. All rights reserved.

technological development requisite for collecting the volume and
resolution of data required to study these phenomena is mature,
but classical data analysis methods are, in many cases, insufficient
to cope with the size, speed and diversity of information sources
providing evidence under the variety of forms (text, videos, audio
recordings, numbers, images) that require global analysis and local
tuning to elidt the hidden, relevant knowledge to support higher
level decision making. Many investigators are already investigating
how Data Sdence can address this defidency.

We present the contributions of Data Science, together with an
analysis of the new, specific skills associated with its inherent
multidisdplinarity. As there is no common definition of Data Sci-
ence, in the paper we present several definitions that have been
used in the past and a propose a new conceptualization of what
Data Science means. A discussion is also provided regarding its
contact points with other emerging disciplines, such as Big Data
Analytics. Emerging opportunities for new applications in Envi-
ronmental Sciences are described. While not an exhaustive
description of the opportunities for Data Sdence in Environmental
Science applications, a wide perspective in the area is provided.
Being an emergent field, a number of open issues envisage fertile
areas for new research in the near future. The paper also provides
some highlights, challenges, and trends with the aim to push the
development of the Data Science field in general, and in

Gibert, K., Horsburgh, J. S., Athanasiadis, I. A., Holmes G. (2018). Environmental Data Science, Environmental Modelling & Software, 106, 4-12, https://doi.org/10.1016/j.envsoft.2018.04.005.
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Cyberinfrastructure can help bridge
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* Provide data management,
visualization, and analysis
tools that advance scientists’
capabilities

* Build them in a way that
makes them more accessible
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A systems approach could
benefit from improved
“composability”

How do we connect existing systems?



The old working paradigm

The “Beefy” Desktop Computer
o Large hard drive(s)

o Multiple processors

o Large amounts of RAM
Most work done locally

o Modeling

o Geospatial analyses

o Data processing

o Visualization

Isolated — can be difficult to share and
reproduce



More services are now cloud based
Composing workflows that bridge clouds is hard

Analysish
Visualization



Summary of Composability Challenges

Good cyberinfrastructure components exist
* We have the parts, but how to connect to better enable Earth science?

Need for standardized interfaces between systems
* Standardized web services APIs
e Client code libraries for popular languages

Need for standardized packaging and representation of data and computational
workflows for transport (data, metadata, provenance)

Develop architectures that are transparent to users

e e.g., users collaborate in Google Docs without caring about the how and where. Can Earth
systems modeling be this transparent?

(Continue) supporting changes in the way people work

* Delivering research and analysis functionality as services over the web

* We need to be able to string existing pieces together to compose analysis and modeling
workflows

* Enable scientists to more easily share and collaborate around data and analyses



Thank you!

Jeffery S. Horsburgh
jeff.Horsburgh@usu.edu

UtahStateUniversity.
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These slides are available in @HYDRUSHARE

Horsburgh, J. S. (2021). Computing, Data, and Cyberinfrastructure for a Systems Approach to Studying the Earth: Perspectives
from the Hydrosphere, HydroShare, http://www.hydroshare.org/resource/331fabb514d641e8b64a832ed464c405
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