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2010s: Interdisciplinary, assessment-focused paradigm

UK Research Councils: “Integrated Assessment of
Geoengineering Proposals”, 2010 - 2015, GBP 1.7 million

(Gecengineerng

German Research Foundation: “Climate Engineering — Risks,
Challenges, Opportunities?” SPP 1689, 2013 - 2019, EUR 10

million

European Union: “European Transdisciplinary Assessment of
Climate Engineering”, 2012 - 2014, EUR 1.3 million

Integrating physical, engineering and social sciences to
construct a framework for assessing effectiveness and
side effects of geoengineering proposals.
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| The IAGP project was funded from October 2010 to Integrated Assessment of

February 2015. Geoengineering Proposals

IAGP Research: What have we learned?



2010s: NSF funding within interdisciplinary, assessment-focused paradigm

® The Ethics of Geoengineering: Investigating the Moral Challenges of Solar
Radiation Management - University of Montana, 2010 - 2014, $375K

® \What are Sustainable Climate-Risk Management Strategies? Penn State, 2012
- 2019, ~$~12 million — “"What are sustainable, scientifically sound,
technologically feasible, economically efficient, and ethically defensible
climate-risk management strategies?”
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What do we have today?
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At the direction of Congress in 2020, NDAA is leading a multi-year research initiative to conduct fundamental research on the stratosphere and marire

boundary layer, investigate natural and human activities that might alter the ref ectivity and radiative balance of the atmosphere, and tha potertial impact of
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What happened?

® \We said what there was to say on SRM, without more field research?

® | ack of progress on climate change and CDR becoming “real” led to more
trepidation about researching them?

® Decreased social science interest in doing interdisciplinary research with these
kinds of scientists on these topics?

® NAS laid out the next steps on interdisciplinary assessment-oriented research,
and we chose not to take them?



So then what?

® Do we need more assessment, or something else?

® Do we need a different style of assessment?



Table 3.2 Continued
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What went I‘ight with CDR / What was missing
geoengineering assessment

® Basic idea that ® Focus on “technical potential”
approaches would have without social constraints
risks as well as e .
(co)benefits ® The social implications inhere in

the implication, not the

® Development of high- technology

level principles | |
® Understanding that policymakers

® Built interdisciplinary rarely choose based on these

understanding ana assessments
common language






The energy piece at scale

® Critical minerals

® | and availability for
renewables

® Global networks for H2

® Geopolitics of fossil fuel
phaseout / support for
producer nations




Decarbonization is an intentional, planetary-scale

project to change climatic conditions

® Have we gone through and created these

assessments of various technologies /

approaches that should be included in the

portfolio?

® |f not, why not?

® Should we?
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8. There are many pathways to zero emissions, and they share several core

features.

All plausible pathways to zero emissions share core features: decarbonizing electricity;
switching to electricity and other low-carbon fuels for energy services in the transpor-
tation, industry, and buildings sectors; increasing energy efficiency in each of those
sectors, in the power sector, and in materials; increasing carbon sequestration, and
reducing emissions of non-carbon climate pollutants.

In particular, there is strong agreement among deep decarbonization studies on the
following points:

Energy and materials efficiency: One of the lowest-cost decarbonization oppor-
tunities helps to reduce the overall need for low-carbon fuels and electricity,
and will continue to be important across all economic sectors through the
next 30 years (Williams et al., 2014; White House, 2016).

Zero-carbon electricity: The electric power sector should cut emissions faster
and deeper than other sectors of the economy in order to meet economy-
wide targets, owing to the comparative ease and wide range of zero-carbon
generation options (Kriegler et al., 2014; White House, 2016; Morrison et al.,
2015; Williams et al., 2014; Krey et al., 2014).

Electrification and fuel switching: Electrification of energy services where
possible—for example, space and water heating in buildings, light-duty
cars and trucks, and some industrial processes—is key to further reducing
the use of fossil energy in the end-use sectors (Kriegler et al., 2014; White
House, 2016; Morrison et al., 2015; Williams et al., 2014; Jacobson et al,, 2015;
Steinberg et al., 2017). Zero- and low-carbon fuels can then meet much of
the remaining demand for liquid and gaseous fuels (de Pee et al., 2018; ETC,
2018; Davis et al., 2018).

CCS: Important for mitigating industrial process emissions, CSS may also be a
useful option for the power sector (IPCC, 2018; de Pee et al., 2018; Rissman et al.,
2020; Friedmann et al.,, 2019; ETC, 2018; Sepulveda et al., 2018).

Non-CO, gases: These are more challenging to address, although options exist
to transition away from hydrofluorocarbons (HFCs) in refrigeration and cool-
ing, and to minimize emissions of methane and nitrous oxide (IPCC, 2018).
Negative emissions: Enhancing carbon sequestration through land sinks
and negative emissions technologies is important to counter residual
emissions from non-CO, gases and hard-to-abate energy sectors that are
impossible or prohibitively expensive to eliminate completely (IPCC, 2018;
NASEM, 2019).



We risk failing at the energy transition if we don’t do a better job with evaluating the
full impacts of our mitigation portfolio and composing it with care / including publics

The primary project is to fully roadmap the transitions

® Analysis of social impacts / EJ analysis

® Global impacts across supply chains, from critical mineral extraction and processing of renewables
to end-of-lite

® | and use implications
® Full roadmaps for how each country can multi-transition each sector

® Anticipation of the international dimensions / geopolitics of fossil fuel phaseout



We risk failing at the energy transition if we don’t do a better job with evaluating the
full impacts of our mitigation portfolio and composing it with care / including publics

The primary project is to fully roadmap the transitions

® Analysis of social impacts / EJ analysis

® Global impacts across supply chains, from critical mineral extraction and processing of renewables
to end-of-lite

® | and use implications
® Full roadmaps for how each country can multi-transition each sector
® Anticipation of the international dimensions / geopolitics of fossil fuel phaseout

We are starting to do this now, but not at the scale required, not in an interdisciplinary and global
fashion, and we should have done it twenty+ years ago



Our framework should deal with carbon removal alongside decarbonization

® \What's special about carbon removal technologies that's distinct from mitigation technologies /
approaches?

® From a human dimensions standpoint, they seem deeply entwined
® Residual emissions policy: the more sectors that are "hard-to-abate”, the more CDR needed

® Business case for frontier approaches (biomass gasification, electrochemical ocean approaches) may
rest on producing H2

® Geological storage and associated infrastructure fundamental to CDR and CCS mitigation
® Renewable energy needs for DACCS, others critical to whether they can scale
® Biomass management associated with BECCS / power sector

® Agricultural decarbonization interactions with enhanced weathering, soil C, etc.



Carbon removal already happens

Clean Record
Investments in carbon and climate startups hit a high in the second
quarter

-hon Dioxide Remova Carbon management

Climate monitoring and modeling

BECCS Biochar Other Novel CDR
Other climate/software

Novel CDR

Sources: BNEF, PitchBook, news sources
#Investments in millions $

Conventional CDR
methods on land
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Million tons of CO. removed

State of CDR report



US long term strategy includes CDR

REPRESENTATIVE PATHWAY TO 2050 NET-ZERO ALTERNATE PATHWAYS TO 2050 NET-ZERO
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Figure ES-2: Emissians Reductions Pathways to Achieve 2050 Net-Zero Emissions in the United States.
Achieving net-zero across the entire U.S. economy requires contributions from all sectors, including:
efficiency, clean power, and electrification; reducing methane and other non-CQ, gases; and enhancing
natural and technological CO, removal. The left side of the figure shows a representative pathway with high
levels of action across all sectors to achieve net-zero by 2050. The right side shows a set of alternative
pathways depending an variations in uncertain factors such as trends in relative technology costs and the
strength of the land sector carbon sink.



CHAPTER 6:

REMOVING CARBON THROUGH
2050 AND BEYOND

6.1 THE NECESSITY OF
CO, REMOVAL TO REACH
NET-ZERO

Efficiency, electrification of end uses,
decarbonization of the electricity
sector, and reduction in non-CO,
emissions are the most important
levers for decarbonizing the U.S.
economy and will be the emphasis of

the overall strategy to reach net-zero
by 2050.

Figure 17: Balancing Emissions Reductions
and Removals to Reach 2050 Net-Zero.
This figure shows the range of outcomes

for mitigation pathways as well as removals
pathways to achieve net-zero by 2050.
Some sources of non-CO, emissions, and
potentially some CO, emissions, cannot be
reduced to zero, and these must be balanced
by CO, removals. CO, removals can happen
through land sinks, such as forest growth
and soil carbon sequestration, or through
carbon dioxide removal technologies such
as direct air capture or carbon capture

and sequestration in industry or electricity
generation. Note: Historical data in this figure
are from the U.S. GHG Inventory (2021).
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Understanding Benefits and Risks Towards Scale-up

-----q

New Approaches

New Approaches

Approach-specific Research (Table S.3)
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S Y-

b

CDR Research to Be Conducted

Foundational Research

Time and/or Cumulative Research Investment

FIGURE 8.2 Conceptual timeline of ocean-based CDR research based on Tables S.2 and S.3. Stops
included on the diagram represent possible internal and external showstoppers or barriers to a particular
approach.



IMPLEMENTING NEXT GENERATION EARTH SYSTEMS SCIENCE 85

Project initiated ‘ Step 1: Exploration . Project initiated by
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FIGURE 4.2 Conceptual model for transdisciplinary or convergence research,
based on a survey of people around the world who have engaged in such re-
search projects. SOURCE: Reprinted with permission from Elsevier from Steger,
C., J.A. Klein, R.S. Reid, S. Lavorel, C. Tucker, K.A. Hopping, R. Marchant, T. Teel,
A. Cuni-Sanchez, T. Dorji, G. Greenwood, R. Huber, K-A. Kassam, D. Kreuer, A.
Nolin, A. Russell, J.L. Sharp, M.S. Hribar, ].P.R. Thorn, G. Grant, M. Mahdi, M.
Moreno, and D. Waiswa. 2021. Science with society: Evidence-based guidance
for best practices in environmental transdisciplinary work. Global Environmental

. . Change 68. https:/ / doi.org/10.1016/j.gloenvcha.2021.102240.
NAS Next Generation Earth Systems Science report sl s ps:/ /doi.org/ /j.gloenvcha



CURRENT STATUS
ENGAGEMENT

e Dispersed, ad hoc efforts
e Limited decision maker
or public understanding

RESEARCH

e Dispersed, ad hoc efforts
e Limited efforts to
coordinate research

RESEARCH
GOVERNANCE

e Dispersed, ad hoc efforts

e Some potentially relevant
national and international
laws and regulations

Engagement
Initial Research

Program Governance
Design

S W o
 Exit Ramp

Assessment
and Program
Revision

Knowledge

Inform
Decisions

FIGURE S.2 Schematic of SG research and research governance environment.

NAS Solar Climate Intervention Report



Solar geoengineering research: core needs

1. Systematic examination of risks and failures
2. Multiscalar public understanding and engagement, to...
- Scope questions of importance to local resource users, globally

- Support domestic policymaking, globally

The research needs are global: international centers, international
fellowship programs, international summer schools



