Physical science
guestions in MCB

Processes:
How do we deliver the right size of
aerosols?
How much can we brighten clouds?
Which clouds can we brighten?

Impacts:

How much cooling would would

brightening clouds cause?

What are the large-scale climate
responses to MCB?

What are the regional impacts of
MCB?
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Lab Studies

Physical science
guestions in MCB

Processes:
How do we deliver the right size of
aerosols?
How much can we brighten clouds?
Which clouds can we brighten?

Outdoor studies
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Significant uncertainties in
aerosol/cloud processes and their
representation in climate models

Cloud resolving modeling e.g.,
Large Eddy Simulations

Satellite analysis
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Observational studies
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Accumulation-mode sea salt

Ship-based plume Research aircraft #1:

sea-salt in-situ aerosol & cloud

spray system UAV aerosol size dist. & concentration;
& met. station deployed from ship cloud microphysics;

MBL meteo. (T, P, humidity, winds)

Diamond et al., 2020

aerosol conc,, size, plume mapping;
met. data
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Climate models are used to assess:
Physical science * Global-scale MCB forcing

questions in MCB * Climate feedbacks
* Large scale circulation response remperature impact of McB forcing

in three Global Climate Models

MCB in NEP, SEP, and SEA
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Processes:
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What are the large-scale climate
responses to MCB?

What are the regional impacts of
MCB?

Even with two related climate

models, we see notable regional

uncertainties
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PhVS|Ca| science MCB effects on e.g., hydroclimate, marine

questions in MCB ecosystems, and atmospheric chemistry
P . Tropospheric Chlorine increase due to MCB
FOCESSES. Horowitz et al., 2019
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Supplementary slides



Contact

 Haruki Hirasawa, Postdoctoral Fellow
* University of Victoria, Victoria, British Columbia, Canada
* hhirasawa@uvic.ca

* Colleagues on CESM2 and E3SMv2 MCB modeling project:
* Hansi Singh and Dipti Hingmire, University of Victoria
* Mingxuan Wu and Hailong Wang, PNNL

* Philip Rasch, Robert Wood, Sarah Doherty, and Kyoungock Choi, University of
Washington

* Linda Hedges, SilverLining
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SINGLE-PLUME MARINE AEROSOL-CLOUD

INTERACTIONS STUDY

Accumulation-mode sea salt

plume mapping;

plume
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COASTAL STUDY OF AEROSOL EVOLUTION WITH THE NEW
CLOUD-AEROSOL RESEARCH INSTRUMENT (CARI)

— Sea-salt
aerosol plume

Tower: inlet
Tethered balloons: + SEMS, APS

miniSEMS + T & RH sensors
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Typical aerosol plume in LES from

Cloud resolving modeling Stuart et al Atmos. Chem. Phys, 13,

10385-10396, 2013

Cloud resolving WRF cloud albedo response to different MCB injection methods from:
“Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of
aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei”

Wang et al., 2011. Atmos. Chem. Phys,,
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Global model forcing

Shortwave cloud forcing due to tropical sea salt aerosol emissions from
“The sign of the radiative forcing from marine cloud brightening depends on
both particle size and injection amount” Alterskjaer and Kristjansson, 2012
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All and clearsky radiative forcing due to tropical sea salt aerosol emissions in
three models from “Marine cloud brightening — as effective without clouds”

Ahlm et al.,
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Temperature response to MCB in GFDL-CM2 from “Nonlinear
climate response to regional brightening of tropical marine
stratocumulus” Hill and Ming, 2012. GRL

Global Model Responses " o

Temperature response to MCB in GFDL-CM2 from “Investigation
of the Surface and Circulation Impacts of Cloud-Brightening
Geoengineering” Baughmann et al., 2012. J. Clim.
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Multimodel ensemble mean temperature response from G4cdnc
simulations (global forcing) from “Response to marine cloud
brightening in a multi-model ensemble” Stjern et al., 2018
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MCB effect on tipping elements
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Physical science
guestions in MCB

Processes:
How do we deliver the right size of
aerosols?
How much can we brighten clouds?
Which clouds can we brighten?

Impacts:

How much cooling would would
brightening clouds cause?

What are the large-scale climate
responses to MCB?

What are the regional, stakeholder
relevant impacts?
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