Habitability & Climate Mobility Modeling

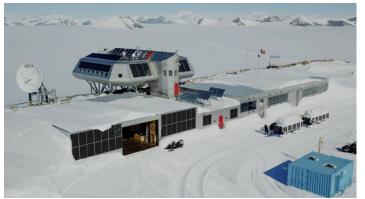
Alex de Sherbinin, PhD
Interim Director
Center for International Earth Science Information Network (CIESIN)
Columbia Climate School, Columbia University

Workshop on Climate Change and Human Migration:
An Earth Systems Science Perspective

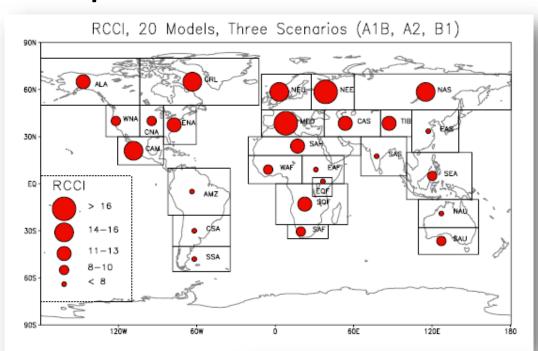
National Academies of Science, 19 March 2024

The "Habitability" Concept

Definition of habitability

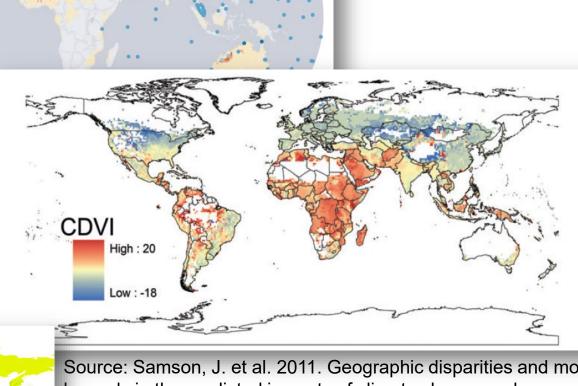

- Habitable: capable of being lived in; suitable for habitation
- The environmental conditions in a particular setting that support healthy human life, productive livelihoods, and sustainable intergenerational development at a reasonable cost
- Climate change may undermine one or more of the dimensions of habitability: basic human survival, livelihood security, and societies' capacity to manage environmental risks

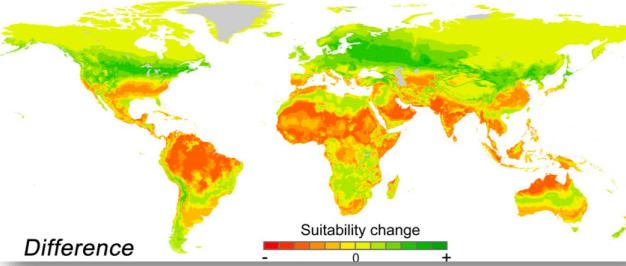
doi: 10.1126/science.abi8603



Key messages

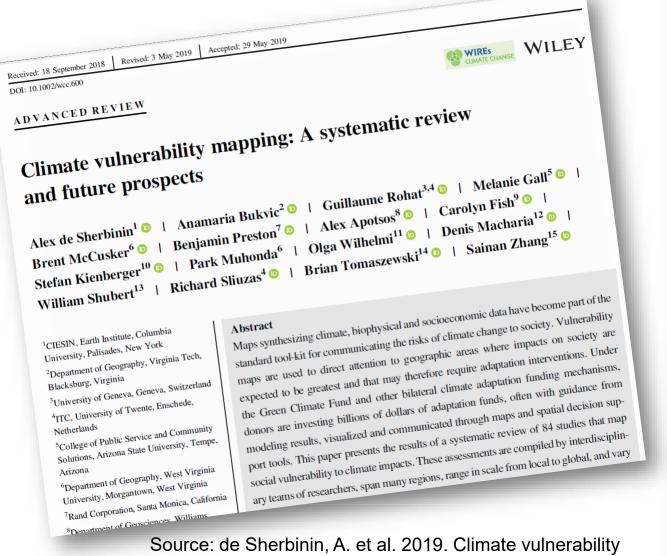
- Top-down, climate impact modeling can help ID "hotspots" and warn of potential dire consequences of CC, but is often overly deterministic when considering societal responses (cf. Hulme 2011, "Reducing the future to climate")
- Amounts of distress migration are likely to rise in response to climate stressors, but also involuntary immobility
 - Policy: "the Global Compact on Migration calls on governments to 'strengthen joint analysis and sharing of information to better map, understand, predict, and address migration movements' as a result of climate change impacts—all of which are essential aspects of habitability assessment" (p.1282)
- We propose a marriage of top-down assessment and bottom-up coproduction of knowledge for local adaptation solutions (or bottom-up modeling)

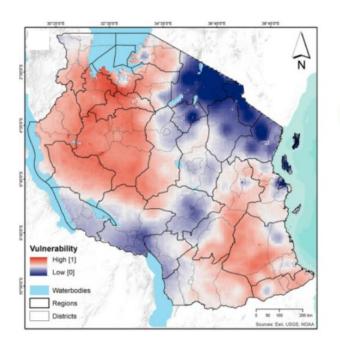

Hotspots of Climate Impacts


Source: Horton et al. 2020 based on Oppenheimer et al 2019 and Li et al. 2020.

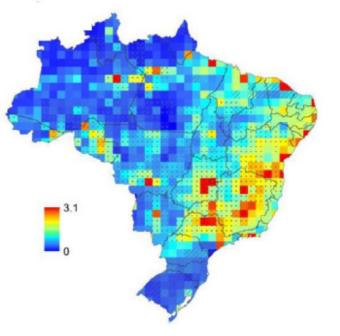
Extreme sea level (occurrences per year) WBGT return periods (occurrences per year)

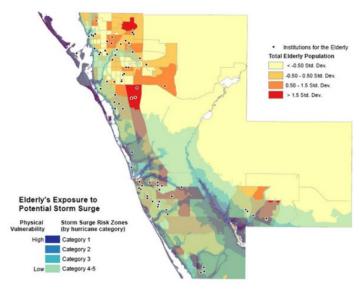
●1-3 ●>3-6 ●>6-9 ●>9-12 ●>12 ●>50 ●>40-50 ●>30-40 ●>20-30 ●>10-20 ●>5-10 ●>0-5

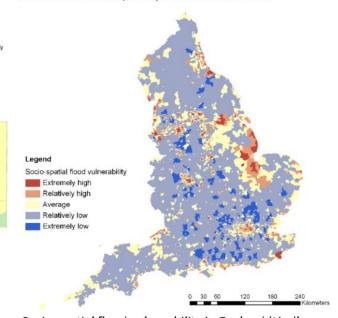

Source: Giorgi, F. 2006. Climate change hot-spots, Geophysical Research Letters, 33, L08707


Source: Samson, J. et al. 2011. Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. *Global Ecology and Biogeography* doi:10.1111/j.1466-8238.2010.00632.x

Source: Xu, C. et al. 2020. Future of the human climate niche. *Proceedings of the National Academy of Sciences*, 117(21), 11350-11355.


Climate Vulnerability Mapping


mapping: a systematic review and future prospects. *WIRES Climate Change*. https://doi.org/10.1002/wcc.600


Vulnerability to Malaria in Tanzania, circa 2010 (Hagenlocher and Castro 2015)

Socio-Climatic Vulnerability Index for Brazil circa 2010; hatching indicates regions where climate projection-related uncertainty is high (Filho et al. 2016)

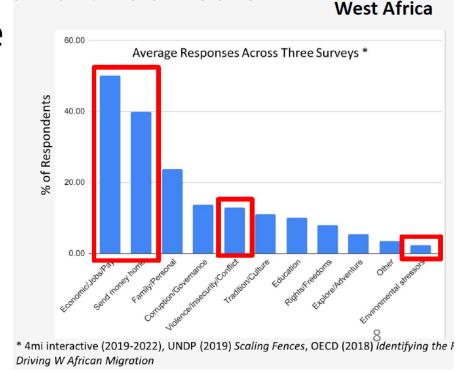
Physical vulnerability of the elderly to potential storm surge in Sarasota County, circa 2010 (Wang and Yarnel 2012)

Socio-spatial flood vulnerability in England (Lindley et al. 2011)

PERN cyberseminar (March 2023)

"The habitability concept in the field of population-environment studies"

- Habitability of SESes has a physical dimension, a socially constructed dimension (related to capabilities), and an emotive dimension (place attachment or a sense that a place is "home")
- Habitability is an emergent property a place cannot easily be defined as habitable or uninhabitable, but its habitability is revealed through other variables, or after successive shocks (Sterly, Gavonel)
- Habitability can be ascertained as an accumulation of individually based determinations of habitability (Wrathall)
- Habitability has three dimensions: collective ability to respond to risk (governance), livelihood resilience (including food security), physical and psychological safety (Wrathall)
- Climate change reduces the level of habitability of a SES up to a point at which a small perturbation (e.g., a marginal increase in temperature variability) could trigger a social tipping point (Gavonel)

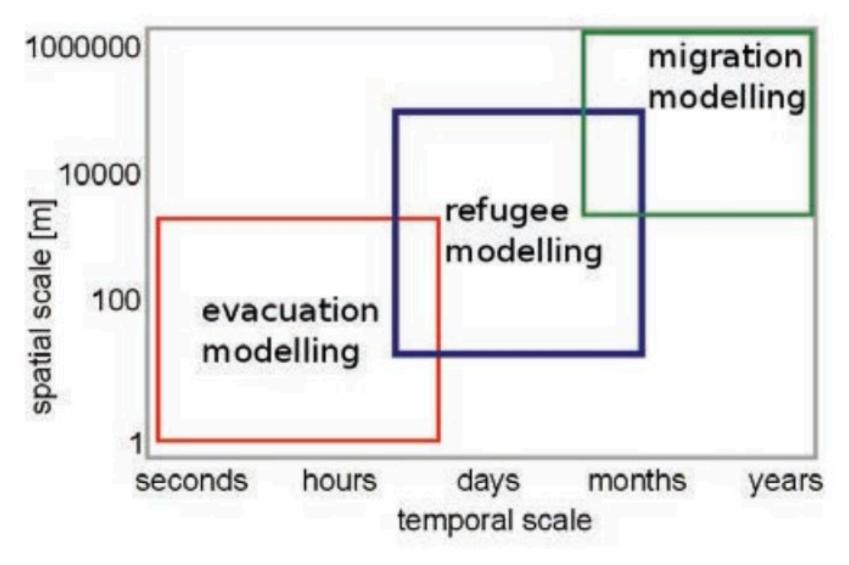

Reflections on day 1 presentations

- Issues with climate as the starting point
 - In diagrams: climate shock is generally on the left hand side
 - May be more tractable as a problem, but mis-identifies the causes (cf. Ribot et al. 2020 "Climate of Anxiety")
 - How do we better frame our questions? (cf. Cottier et al. 2022 "Framing the frame")

Western academics are defining the categories and theories of

migration – but we are at risk of "othering" the migrant and missing their voices (cf. Khosravi 2024 "Doing migration studies with an accent")

- What do migrants (and "stayers") themselves say?
- What are the lived experiences of migrants?


Climate Mobility Modeling

With particular reference to future projections / scenarios

Why develop scenarios for future population distribution and climate migration distribution?

- Population distributions are unlikely to evolve as they have in the past
- Academics have the tools, are curious, and there is funding for research
- Demographers have always projected populations to meet needs for **planning purposes**, since population is fundamental
- The humanitarian community wants projections of likely displacement for humanitarian response
- Development actors are grappling with potential limits to adaptation for rural livelihoods, trapped populations, and how population may be redistributed as a result
- Receiving countries want to understand the magnitude of future flows especially of potential crisis migration
- Policy makers want "what if" scenarios based on alternative futures high/low impacts, pop projections, open/closed borders, and other policy interventions and we can't do a real world experiment
- Some models are better at causal inference, others prediction, and some can do both

Scales for modeling

Source: Groen (2016) Simulating Refugee Movements: where would you go?

Modeling should be grounded in migration theory

Migration theory invoked by
econometric studies (n=22)
Neoclassical
NELM
Livelihoods Framework

Migration theory invoked by projections and future scenarios studies (n=14)

Neoclassical	27.3%	Neoclassical	28.6%	
NELM	18.2%	Push-Pull	21.4%	
Livelihoods Framework	13.6%	Other Theories *	21.4%	
Other Theories *		No Theory	7.1% OPEN	
Push-Pull		NELM	7.1% OPEN ACCESS	
Env Mig Frameworks	9.1%	Mobility Transition / Migration Hump	7. 1% "Itemational Institute for Applied attention Analysis (IASA), Austria	
No Theory		Env Mig Frameworks	7.1%0 Reviewed by	
Theories Sust Mig	4.5%		Onversity of Melbourne August	i
* Other Theories (e.g. Life Course, Socio-E	cological	Systems, Cultural Ecology)	Roma Tre University III.	F a va

* frontiers | Frontiers in Climate

Migration Theory in Climate Mobility

Alex de Sherbinin '*, Kathryn Grace², Sonali McDermid³, Kees van der Geest⁴,

Center for International Earth Science Information Network (CIESIN), Columbia Climate School, Columbia University, Canter for international cartin ocience information intervents (UESNIY), Columbia Ulmate School, Columbia University of Ministration of Geography, Environment and Society, University of Minnesota, Minnespolis, Adv. Call. 1888 (1988) Passaces, Nr., unseo States, "Leparment or usography, Environment and Society, University or Minnesore, Amnespose
MN, United States, "Department of Environmental Studies, New York University, New York, NY, United States, "United

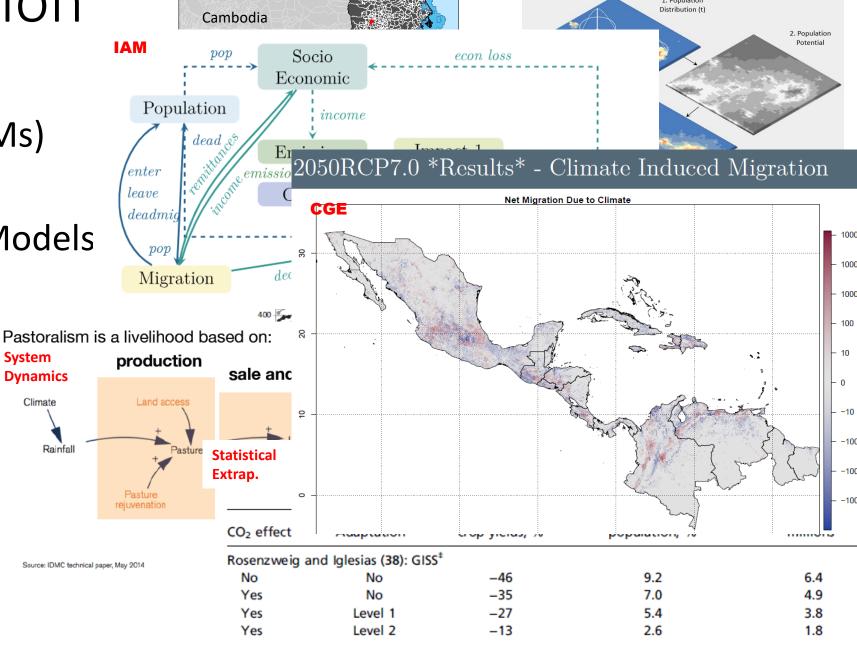
Association of the Commental Studies, New York University, New York, NY, United States, "United

The Commental States, "United States, "United States," United States, "United States, "United States, "United States, "United States, "United States, " MN, United States, "Department of Environmental Studies, New York University, New York, NY, United States, Strated Nations University Institute for Environment and Human Security (UNU-EHS), Born, Germany, *Centur for Climate Systems Vanons University institute for crivaronment with riumant occurry (UNIVERTS), CULTI, CARTURERY, CHARLES AND CARTURERY, CHARLES OF CA

The purpose of this article is to explore how migration theory is invoked in empirical studies of climate-related migration, and to provide suggestions for engagement with theory in the emerging field of climate mobility. Theory is critical for understanding processes we observe in social-ecological systems because it points to a specific locus of attention for research, shapes research questions, guides quantitative model development, influences what researchers find, and ultimately informs policies and programs. Research into climate mobility has grown out of early studies on environmental migration, and has often developed in isolation from broader theoretical developments in the migration research community. As such, there is a risk that the work may be inadequately informed by the rich corpus of theory that has contributed to our understanding of who migrates; why they migrate; the types of mobility they employ; what sustains migration streams; and why they choose certain destinations over others. On the other hand, there are ways in which climate and broader environment migration research is enriching the conceptual frameworks being employed to understand migration, particularly forced migration. This paper draws on a review of 75 empirical studies and modeling efforts conducted by researchers from a diversity of disciplines, covering various regions, and using a variety of data sources and methods to assess how they used theory in their research. The goal is to suggest ways forward for engagement with mioration theory in this large and growing research domain

Doi:10.3389/fclim.2022.882343

		Migration capabilities		
		Low	High	
Migration aspirations	High	Involuntary immobility (feeling "trapped")	Voluntary mobility (most forms of migration)	
	Low	Acquiescent immobility	Voluntary immobility and involuntary mobility (refugees, resettlemen	

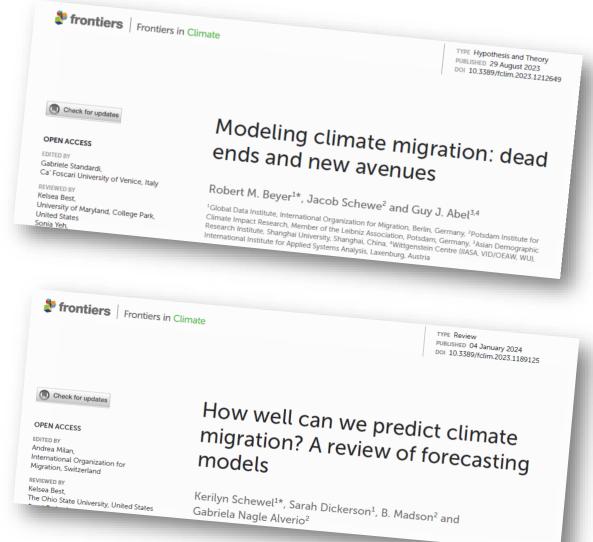

Based on De Haas (2021, Table 1, p. 22).

Modeling approaches that have been applied **Gravity Models**

Exposure Model

to climate migration

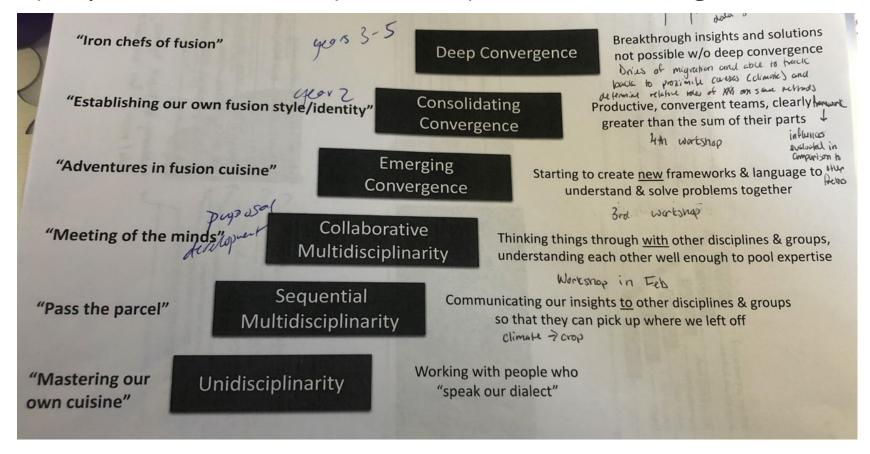
- 1. The "Exposure Model"
- 2. Agent Based Models (ABMs)
- 3. System Dynamics
- 4. Statistical Extrapolation Models
- 5. Machine Learning
- 6. Gravity Models
- **Integrated Assessment** Models (IAMs)
- 8. Computable General Equilibrium (CGE) models



Modeling issues

"Whilst the use of different migration data and different climatic and non-climatic variables considered in models account for some of the discrepancies [in observed relationships between climate factors and migration], several other fundamental issues are present in the large majority of models introduced to date that limit what such models can contribute to our understanding of historical trends and our ability project future trajectories of climate mobility ..." (Beyer et al 2023, p.2)

"Global human mobility in response to climatic changes and associated environmental hazards is as much a geopolitically significant topic as an exceptionally complex challenge for quantitative modeling and forecasting." (Beyer et al 2023, p.6)


"Further model refinement will also require inputs from a broad community of experts. **Greater trans-disciplinary collaboration between natural and social scientists could help modelers capture climate-related and environmental conditions** that are unaccounted for in current models." (Schewel et al. 2024, p.13)

See: https://www.frontiersin.org/research-topics/49300/climate-mobility-modeling-methodological-advances-and-future-prospects

Thoughts on inter-/trans- disciplinary research

- From 2019-2023 served as co-I on an NSF Global Convergence Research project "Disentangling Environmental Change and Social Factors as Drivers of Migration"
- We had two climate scientists (R. Seager, S. McDermid), a geographer (me), an economist (W. Schlenker), a systems modeler (A. Bell), an environmental engineer/hydrologist (M. Puma), a political scientist (F. Cottier), and some hangers on
- Yes on:
 - shared vocabulary
 - training
 - limited resources
 - assessment / evaluation
- And, it's hard!
- Heartening that social scientists are now equal partners

Thanks!

We plan a climate mobility modeling intercomparison workshop, 25-27 September, in New York City, co-organized by CIESIN, Columbia Climate School, Princeton, Cornell, and the Global Centre for Climate Mobility. Reach out to me for more information — amd155@columbia.edu