
Bat and human gastrointestinal organoids as *in vitro* models to define pathogenic and protective responses to SARS-CoV-2 infection

Diane Bimczok, DVM PhD
Associate Professor of Microbiology and Immunology

Interdisciplinary team at Montana State:

Department of Microbiology & Immunology

Diane Bimczok Seth Walk

Mark Jutila

Mucosal **Immunology** Marziah Hashimi Michelle Cherne Andy Sebrell

Katrina Lyon

Gut Microbiome **Brittany Jenkins**

Immunology

Jodi Hedges Amanda Robison

Chemical & Biological **Engineering Department**

Connie Chang James Wilking

Drop-based Microfluidics

Humberto Sanchez Emma Loveday

Soft Matter

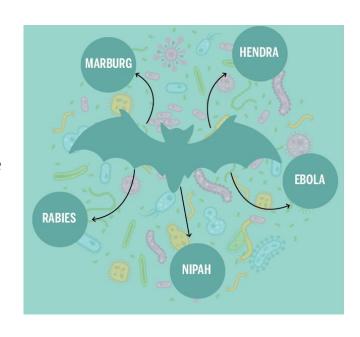
Physics

Barkan Sidar Zahra Mahdieh

Collaborators:

Anja Kunze, MSU Seth Pincus, MSU Matthew Taylor, MSU Vincent Munster, NIH **Christiane Wobus, U Michigan**

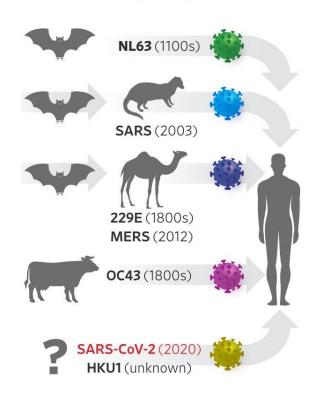
Raina Plowright, MSU


Tony Schountz

Bats are key reservoir hosts for multiple zoonotic viruses

- Bats are key reservoirs for zoonotic viruses including filoviruses, henipahviruses and coronaviruses (Letko, Nature Rev. Microbiol. 2020)
- Bats harbor a large number of coronaviruses in their guts without developing disease (Watanabe 2010, Banerjee 2019).
- Bats have unique antiviral response pathways that enable them to tolerate viral infections (Schountz, Viruses 2014)

Understanding the pathways involved in viral tolerance in bat cells may point to new treatment approaches in humans



Bats as reservoir hosts for SARS-CoV-2?

- Bats (Chinese horseshoe bats) are thought to be the reservoir host for SARS-CoV-2 (Li, Infect Genet Evol. 2020).
- Bat coronavirus RaTG13 is closely related to SARS-CoV-2 – 96% sequence identity (Zhou, Nature, 2020).
- Other zoonotic coronaviruses have been traced back to bats (Letko, Nat Rev. Microbiol. 2020).

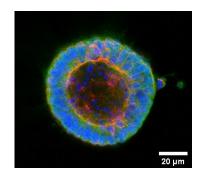
Epidemic Potential

Coronaviruses are jumping increasingly from animals to humans, creating new threats



Source: Timothy Sheahan, University of North Carolina

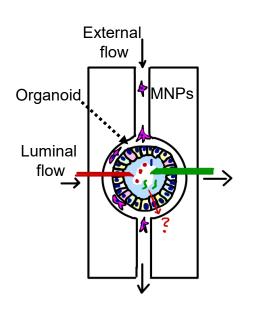
Hurdles to investigating infectious diseases in bats


- Regulatory hurdles in working with wild bats
- Few research colonies, specific requirements
- Very few cell models available
- No commercially available antibodies and reagents

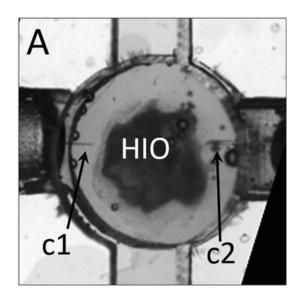
Development of a microphysiological model to study bat responses to SARS-CoV-2

1. Bat gastrointestinal organoids

- Organoids are permanent 3-D cultures of nontransformed organ-specific cell types
- Intestinal organoids from horseshoe bats have been shown to support SARS-CoV-2 infection in a landmark study from China (Zhou et al. Nature Med. 2020)

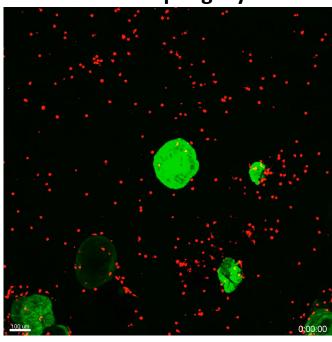

2. Modeling SARS-CoV-2 infection in a microphysiological platform

- Fluidics enable controlled application and sampling of virus, mediators, potential treatments, etc.
- Co-culture of immune cells with mucosal epithelium enables analysis of complex tissue responses

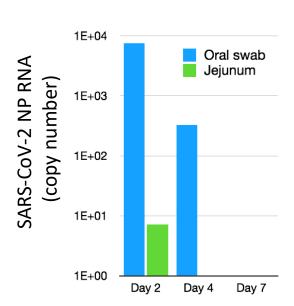


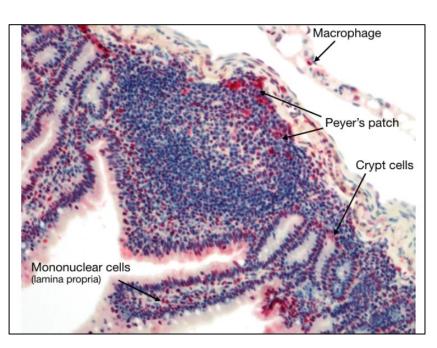
The GoFlowChip platform

- Incorporates 3-D gastrointestinal organoids in their natural conformation
- Organoids embedded in extracellular matrix material



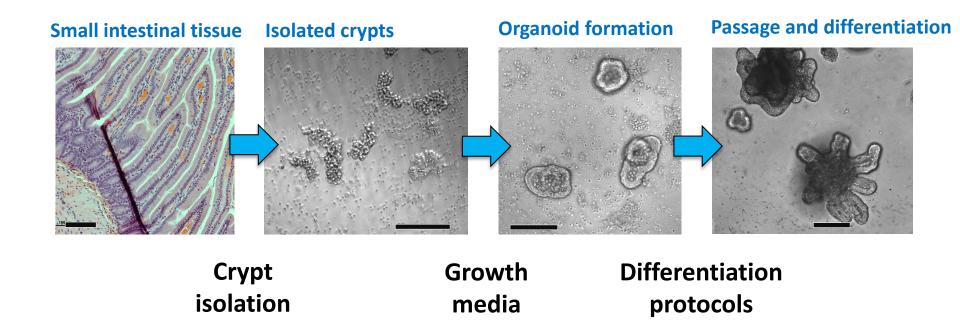
Original design with internal and external flow


Sidar et al. LabChip 2019


Incorporation of mononuclear phagocytes

Jamaican Fruit Bats are Susceptible SARS-CoV-2 Infection

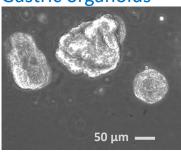
Data kindly provided by Dr. Tony Schountz, Colorado State University



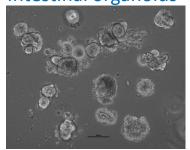
Key growth factors for gut organoids are highly conserved in mammals

Wnt3a	Mouse Bat	1 TILDHMHLKCKCHGLSGSCEVKTCWWAQPDFRAIGDFLKDKYDSASEMVVEKHRESRGWV 60 1 TILDHMHLKCKCHGLSGSCEVKTCWWAQPDFRAIGDFLKDKYDSASEMVVEKHRESRGWV 60
98.7% Identity	Mouse Bat	61 ETLRAKYALFKPPTERDLVYYENSPNFCEPNPETGSFGTRDRTCNVTSHGIDGCDLLCCG 120 61 ETLRAKYALFKPPTERDLVYYENSPNFCEPNPETGSFGTRDRTCNVTSHGIDGCDLLCCG 120
	Mouse Bat	121 RGHNTRTEKRKEKCHC <mark>V</mark> FHWCCYVSCQEC <mark>I</mark> RIYDVHTCK 160 121 RGHNTRTEKRKEKCHC <mark>I</mark> FHWCCYVSCQEC <mark>V</mark> RIYDVHTCK 160
Noggin	Mouse Bat	1 M <mark>E</mark> RCPSLGVTLYALVVVLGLRAAPAGGQHYLHIRPAPSDNLPLVDLIEHPDPIFDPKEKD 60 1 M <mark>D</mark> RCPSLGVTLYALVVVLGLRAAPAGGQHYLHIRPAPSDNLPLVDLIEHPDPIFDPKEKD 60
99.1% Identity	Mouse Bat	61 LNETLLRSLLGGHYDPGFMATSPPEDRPGGGGGPAGGAEDLAELDQLLRQRPSGAMPSEI 120 61 LNETLLRSLLGGHYDPGFMATSPPEDRPGGGGGPAGGAEDLAELDQLLRQRPSGAMPSEI 120
	Mouse Bat	121 KGLEFSEGLA <mark>Q</mark> GKKQRLSKKLRRKLQMWLWSQTFCPVLYAWNDLGSRFWPRYVKVGSCFS 180 121 KGLEFSEGLA <mark>.</mark> GKKQRLSKKLRRKLQMWLWSQTFCPVLYAWNDLGSRFWPRYVKVGSCFS 180
	Mouse Bat	181 KRSCSVPEGMVCKPSKSVHLTVLRWRCQRRGGQRCGWIPIQYPIISECKCSC 232 181 KRSCSVPEGMVCKPSKSVHLTVLRWRCQRRGGQRCGWIPIQYPIISECKCSC 232

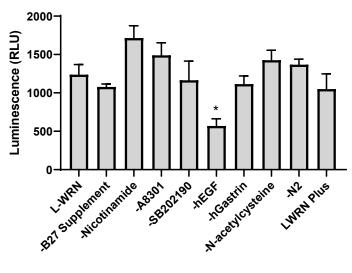
Optimization of bat small intestinal organoid derivation and growth


Optimization of Jamaican fruit bat organoids derivation and growth

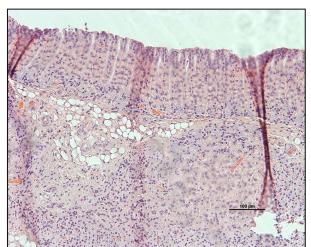
Organoid lines derived


Bat #	Sex	Organs	Sample type	Max. passage
Bat001	M	Stomach Prox. SI Dist. SI	Fresh	29
Bat002	M		Fresh & frozen	13
Bat003	F		Fresh & frozen	13

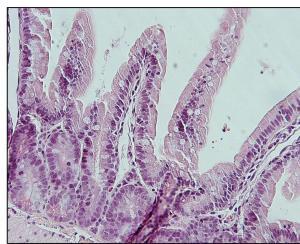
Successful reconstitution after freezing/thawing

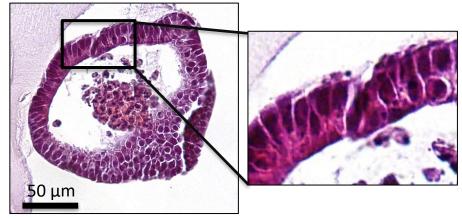

Gastric organoids

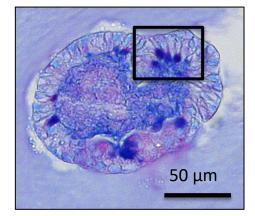
Intestinal organoids

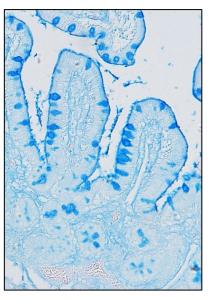

Optimization of growth media

Media compositon

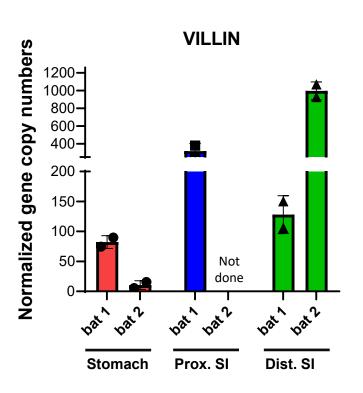

Morphology of fruit bat organoids

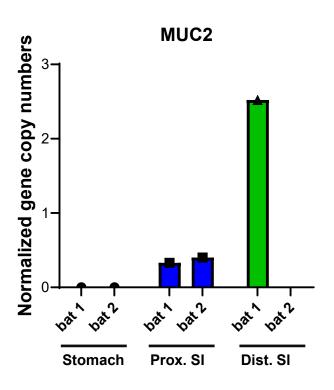

Stomach



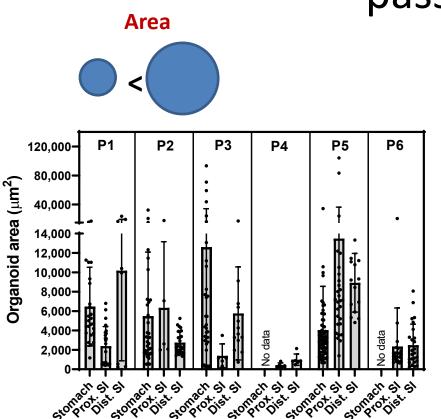

Tissue-specific differentiation of mucus-producing cells – PAS staining

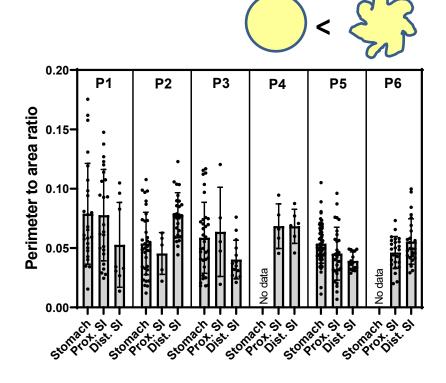
Small intestine

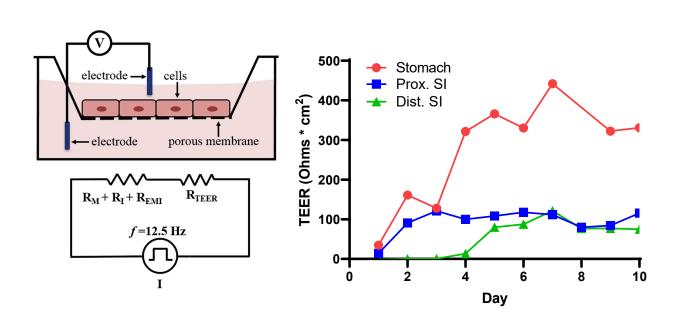


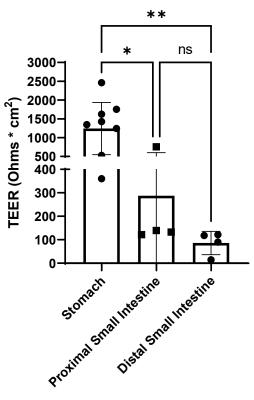


Electron microscopy reveals microvilli, tight junctions and secretory vesicles

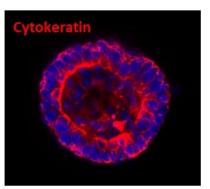

Stomach **Distal small intestine** 500 nm mucus 2.000 nm Secretory vesicles Microvilli Tight junction **Vesicles**

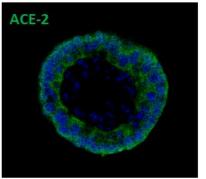

Bat organoids show tissue-specific gene expression patterns

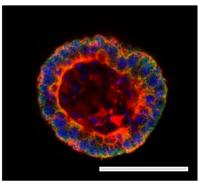

Bat organoids remain stable over multiple passages

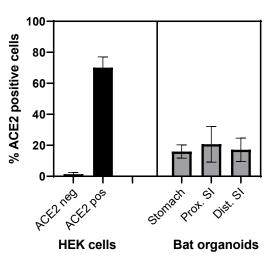


Perimeter vs. area

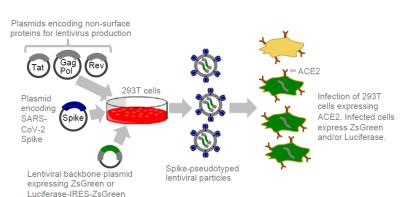

Evidence for epithelial barrier function in bat organoids

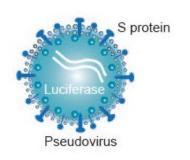


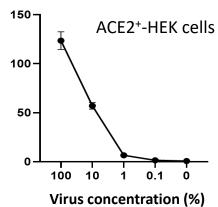



Are bat gastrointestinal organoids susceptible to SARS-CoV-2 infection?

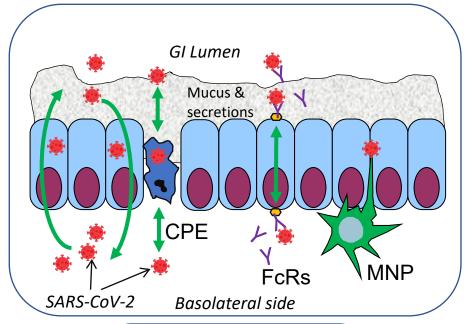
ACE-2 expression

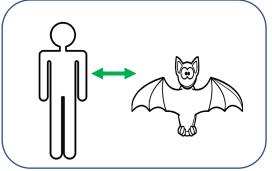





SARS-CoV-2-spike lentiviral reporter pseudovirus

(Crawford et al., Viruses 2020, 12, 513)




RULs

SUMMARY

- Developed and characterized gastrointestinal organoids from Jamaican fruit bats.
- ➤ Optimizing SARS-CoV-2 infection protocol of human and bat organoids on and off chip
- ➢ Goal: Compare primary gastrointestinal epithelial and immune responses of bat and human cells to SARS-CoV-2

