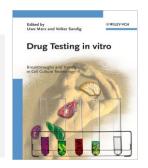
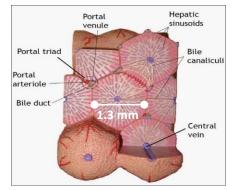
Emulating human organ interactions on a universal multi-organ-chip platform

Dr. Uwe Marx
Founder & CSO of TissUse
uwe.marx@tissuse.com



From a Vision Towards a Universal MPS-based Platform

Vision 2007


Chapter 11

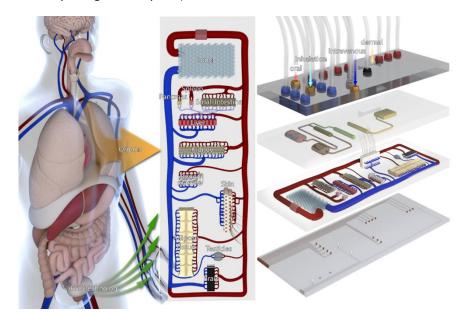
"How drug development of the 21st century could benefit from human micro-organoid in vitro technologies" © 2007
ISBN: 978-3-527-31488-1

- Organs are built up by multiple, identical, functionally self-reliant structural units
- Such micro-organoids are evolutionarily conserved and subject to genetically encoded self-assembly

1 million liver lobules per person

Marx et al., ATLA 2012

Marx et al. *ALTEX* 2020 Dehne & Marx, *Curr Opinion Tox* 2020



"Human"-on-a-chip

"Patient"-on-a-chip

(Universal Physiological Template)

Materne et al., *LabChip* 2013

https://www.youtube.com/watch?v=nkkBu8GrExk

Components of the HUMIMIC® MPS Platform

Commercial Equip

European IQ, OQ, PQ

Rapi

HU

HUMIMIC Starter (4-8 circuits)

HUMIMIC AutoLab (24-48 circuits)

CERTIFICATE

ISO 9001:2015

DEKRA Certification GmbH hereby certifies that the organization

TissUse GmbH

Scope of certification:

Development, production, use and distribution of methods and systems to assess safety and efficacy of substances and therapies

Oudenarder Straße 16, 13347 Berlin, Deutschland

has established and maintains a quality management system according to the above mentioned standard. The conformity was adduced with audit report no. A19011334

Certificate registration no.: Validity of previous certificate

Certificate valid from

2019-12-04 2022-12-03

DEKRA Certification GmbH, Stuttgart, 2019-12-04

DEKRA Certification GmbH * Handwerkstraße 15 * D-70565 Stuttgart * www.dekra-certification.de

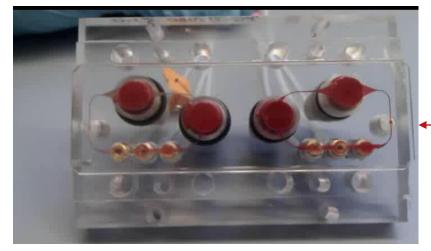
page 1 of 1

Qualified Assays (Context-of-Use)

GCCP standards

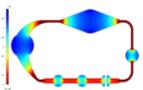
Administration, Exposure time, Dosing regimen, Controls

internal portfolio decision making hazard identification, tier 3 supportive data for IND/IMPD


Regulators

Regidstrations, **Approvals**

Regulatory-acceptable options to validate assays? (Voluntary DDT validation pathway? OECD guideline validation? Others?)


HUMIMIC Chip2 Features

- Size of a standard microscope slide
- On-chip micro-pump enabling pulsatile flow
- Suitable for iPSC-derived cells, primary cells, 3D tissues and cell lines
- Compatible with life tissue imaging
- Plug-in option for insert-based barrier models

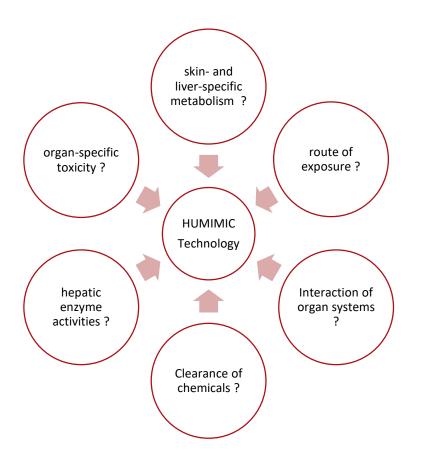
Standard cell culture inserts (96-/12-/24-well format)

COMSOL Multiphysics 5.2.

BDF •••

Selected Case Studies

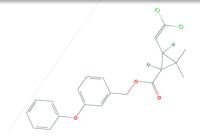
Beiersdorf Level of Organ model Context of use **Schematic** Species readiness Skin - Liver 3 Hazard identification, Tier 3 Ш 3 Skin - Liver Hazard identification, Tier 3 Ш 4 Intestine - Liver Absorption, metabolism Ш 5 Lung - Liver Hazard identification Ш 6 Liver - Pancreas Diabetes drug substances Ш BAYER Skin - Tumor Anti-tumor antibodies Ш vs 🖝 8 Thyroid - Liver Hazard identification, safety П Thyroid - Liver Hazard identification, safety 8 Ш Skin - Leukocytes Allograft rejection therapies vs 🚗 12 Intestine - Muscle Muscle growth agents Ш 13 vasc. Pancreas - Tumor Ш Anti-tumor therapy 14 Bone Nanoparticle toxicity 15 1 Bone marrow Erythropoiesis iii 16 Skin - Hair follicles Hair growth agents 1 **EUTOX**RISK 17 Liver - Cardio Metabolite cardiotox 18 Liver - Kidney Kidney toxicity ADME-axis + 1 ADME-profile, PBPK, Tox 21 M ş 🎍 🗱 21 ADME-axis + 1 ADME-profile, PBPK, Tox 22 Blood-Brain-Barrier Permeability & Neurotoxicity


- DMPK / Safety/ Hazard identification

- Mode of Action /Efficacy

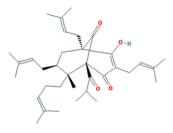
- III Assay established, available for testing/assay transfer
- II Model qualified, available for assay establishment
- I Proof of Concept, available for joint model & assay development

Aim of the Skin-Liver Model Project


- Evaluation of HUMIMIC
 Technology to contribute to
 safety assessment for subacute,
 repeated dose systemic toxicity
- Multi-Organ-Chip model to investigate the interaction of skinand liver-specific metabolism of cosmetics chemicals after single and repeated dermal and systemic exposure

Project Phase 1 – POC Chemical Selection

Permethrin



- Pesticide (occupational)
- Ointment against scabies

Focus: Metabolites

Hyperforin

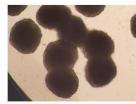
- Phytochemical St. John's wort
- Activates CYP3A4 and CYP2C9 via PXR
- Cosmetics/Dermatics
- Antidepressants NT reuptake inhibitor

Focus: XME induction

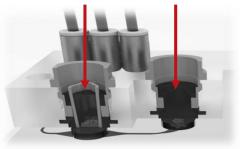
Selected Organ Models and Application Routes

EpiDerm Model

- epidermis model
- human epidermal keratinocytes
- exhibits human epidermal tissue structure and cellular morphology
- organized and proliferative basal cells, spinous and granular layers, and cornified epidermal layers

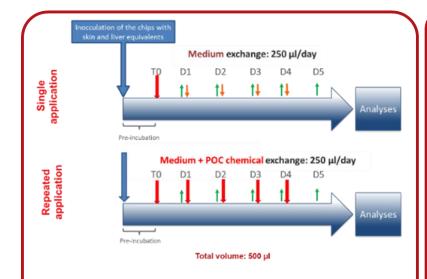


Liver spheroids


HepaRG + Stellate cells

- liver model
- Human hepatocytes (HepaRG cell line by Bioprodic) and human primary stellate cells
- → ratio 24:1
- 25,000 cells/spheroid

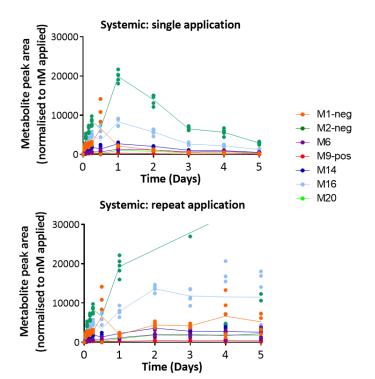
topical systemic

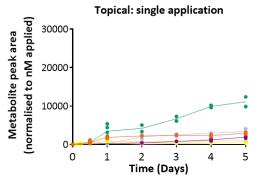


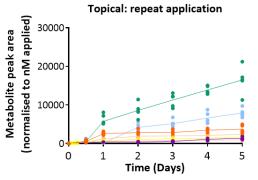
Experimental Design

- 46 54 circuits per experiment, 3-5 circuits per condition
- Solvent control + negativ control

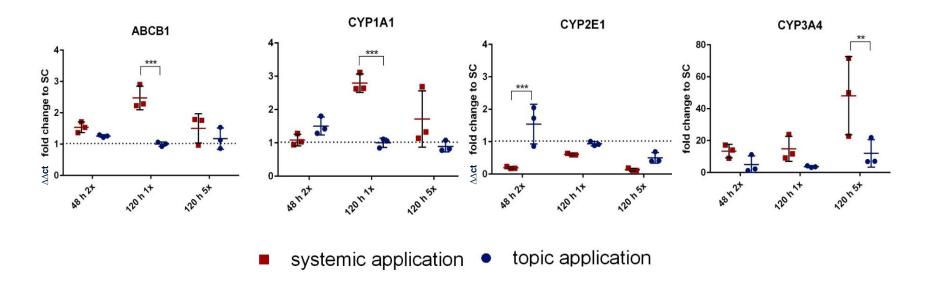
Different endpoints after 1st substance application: 24 hours, 48 hours, 5 days


Read-outs:


- metabolic analyses
- parent compound and metabolites quantification
- histology
- qPCR
- RNA sequencing



Systemic vs. Topical Application: Permethrin Metabolite Kinetics



- Metabolite kinetics of single topical application were different from a single systemic application
- Repeat topical application resulted in similar metabolic profile to repeated systemic application—only M2 and M16 were present at lower concentrations

Hyperforin: XME Gene Modulation

Liver organoids show XME gene modulation by hyperforin and respond differently to topical vs. systemic application at certain time points

Kühnl et al., Toxicology 2021

Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model

Predefined Success Criteria for Project Phase 1

Deliverable	
Maintenance of skin and liver organoid structure and functionality in MOC	✓
Transferability of MOC method to other labs	✓
High intra- and inter-laboratory reproducibility	✓
Demonstration of route effects on metabolism of POC chemicals	✓
Verification of application frequency effects on metabolism of POC chemicals	✓
Demonstrate that application route and frequency affects XME levels in liver organoids	✓

A second project phase has been successfully completed evaluating Genistein and 4-amino-2-hydroxytoluene (AHT). Data are processed.

Acknowledgements

Cosmetics Europe ADME Task Force

Carine Jacques-Jamin Camille Géniès Hélène Duplan

Beiersdorf

Andreas Schepky Daniela Lange

Martina Klaric (formerly)

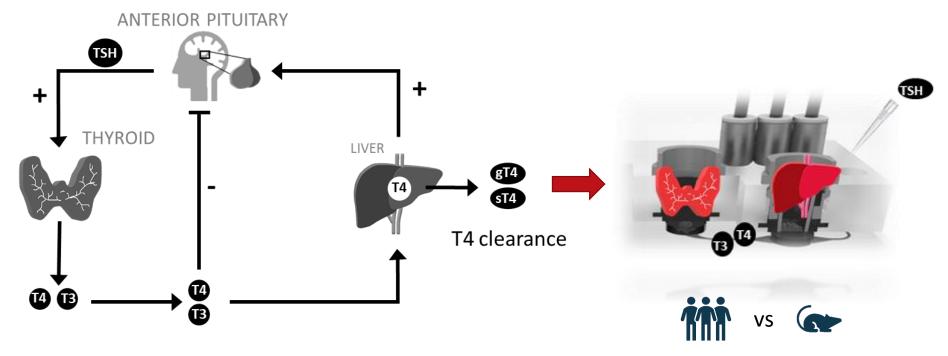
Sébastien Grégoire

Beiersdorf – TissUse Team

Katrin Brandmair Thamée Rings Andreas Schepky Nicky Hewitt

Jochen Kühnl

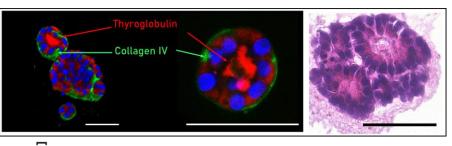
Thi Phuong Tao Ilka Maschmeyer

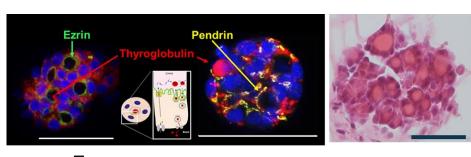

A HUMIMIC®-based Thyroid-Liver Model

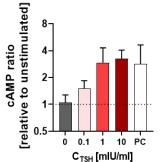
Thomas Steger-Hartmann, Marian Raschke Remi Bars, Helen Tinwell Diana Karwelat, Julia Kühnlenz

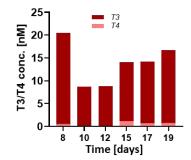
Hypo – and hyperthyroidism, Thyroid disruptors

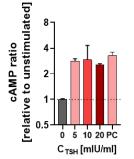
TSH – thyroid-stimulating hormone, T4 – thyroxine, T3 – triiodothyronine gT4 – glucuronidated thyroxine, sT4 – sulphated thyroxine

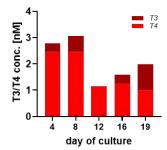

Establishing the Thyroid Models


Thyroid



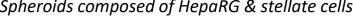


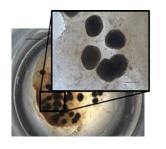


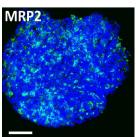


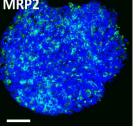
- ✓ Follicular architecture
- ✓ Correct cellular polarity
- ✓ TSH-induced signal transduction and hormone secretion

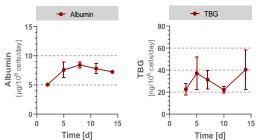
Establishing the Liver Models

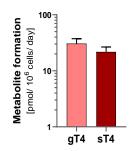

Liver

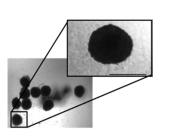


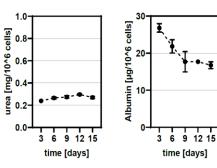


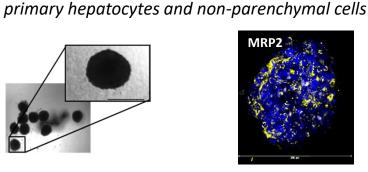


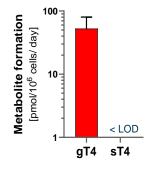

Spheroids composed of HepaRG & stellate cells





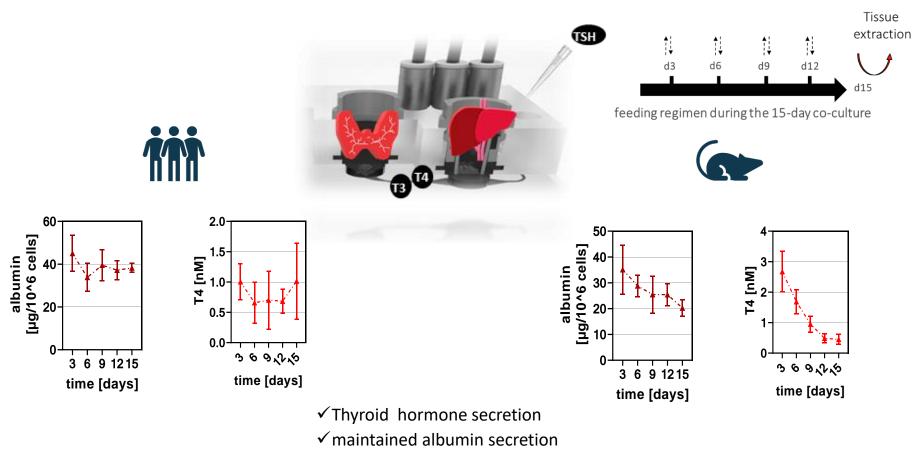






√ Thyroid hormone glucuronidation and sulfation

√ Thyroid hormone glucuronidation, no sulfation


- ✓ Basolateral and apical cell poles (bile canalicular network)
- ✓ Stabile albumin and Thyroxin-binding globulin secretion

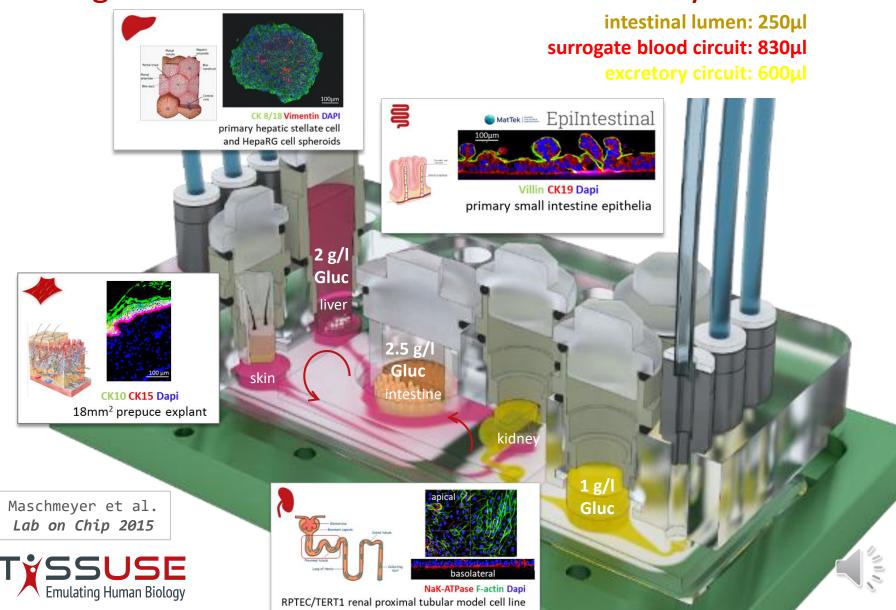
Thyroid-Liver Co-culture Data

In vitro simulation of the hepatic-thyroid hormone axis with artificial administration of TSH (pitutary gland)

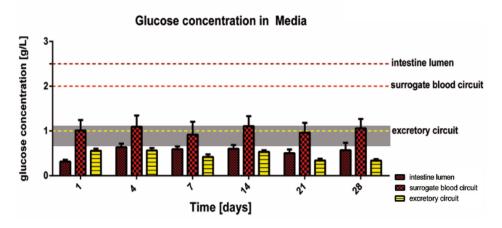
Successful co-culture for >14 days

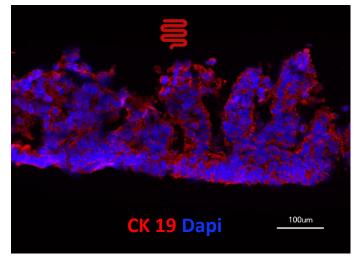
Thyroid-Liver Model – Future Applications

Establishing a human assay to study the hepatic-thyroid axis in vitro


- Direct perturbation of the thyroid gland, e.g. by TPO inhibition
 - ► reduced hormone synthesis
- Indirect perturbation, i.e. induced hepatic hormone elimination
 - ▶ accelerated hormone turnover (gT4 & sT4)

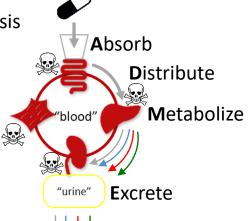
.... Interpolation of thyroid toxicity findings from rodents to humans remains challenging.

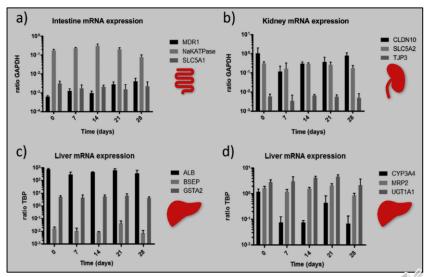




Aiming for a MPS-based Intestine-Liver-Kidney Axis

28-day Maintenance of Homeostatic Conditions

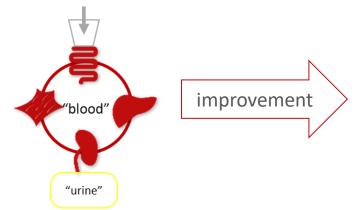




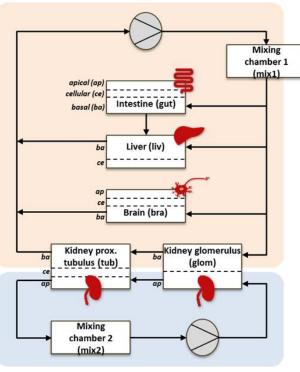
normoglycemic blood glucose

functional barriers

28-day homeostasis

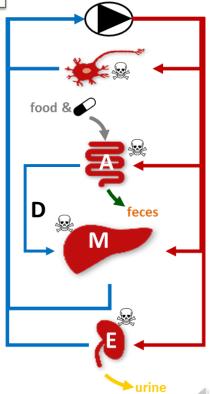


Maschmeyer et al. Lab on Chip 2015


Industry-inspired Redesign

- 1. physiological organ arrangement
- 2. physiological "blood" flow rates
- brain instead of skin
- 4. add glomerulus
- 5. autologous organ equivalents

EU flagship on systemic toxicity testing

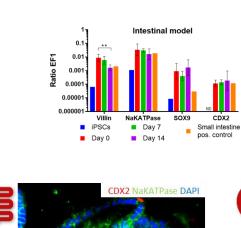


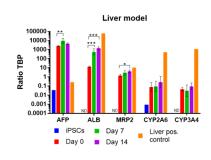
Frederik Bois, INERIS, France

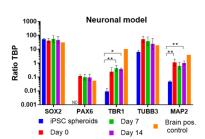
Hamon et al.

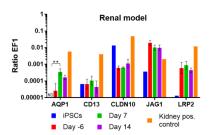

Toxicology in vitro 2015

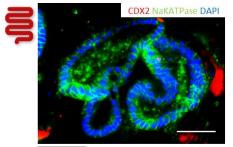
Physiology-based Four-Organ-Chip supporting QIVIVE (PBPK-compliant)

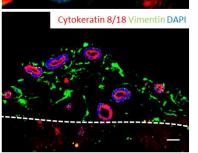


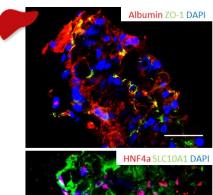


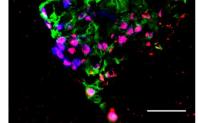

An Autologous Four-Organ-Model Co-culture

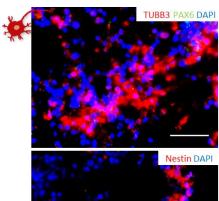


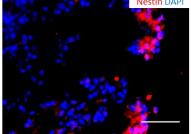

Gene Expression Analysis and Immunohistology

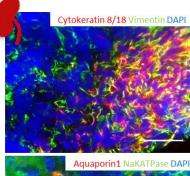


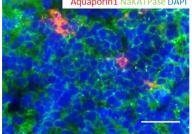


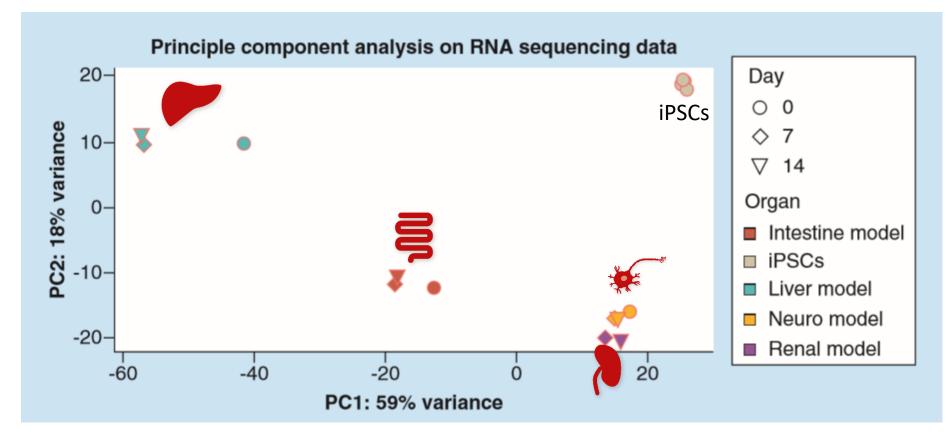











Scale = 50 um

PC Analyses Revealed Distinct Clustering

A POC – study is ongoing to demonstrate usability of such a ADME axis model on the basis of the physiology based 4 organ chip

Conclusion

Qualified MPS- based singleand multi-organ-models can provide qualified context of use assays for hazard identification, safety and efficacy tests

At academic level they support new discoveries and add to the investigation of mode of action of substances and therapies

The establishment of MPSbased animal models is possible but requires the same effort as the human models do.

Nr.	Organ model	Schematic	Context of use	Level of readiness	Species
1	Bone marrow	₹	Bone marrow toxicity	III	ŤŤŤ
2	Hair follicle	1	Hair growth agents	III	TH
3	Skin - Liver		Hazard identification, Tier 3	III	
4	Intestine - Liver	\$ ~	Absorption, metabolism	III	ŤŤŤ
5	Lung - Liver	11-	Hazard identification	III	ini
6	Liver - Pancreas		Diabetes drug substances	III	TH
7	Skin - Tumor	* 60	Anti-tumor antibodies	III	iñ
8	Thyroid - Liver	W -	Hazard identification, safety	II	Vs 🖝
9	Testis - Liver	63	Testicular toxicity	II	iii
10	Liver - Neuro		Metabolite neurotoxicity	II	ŤŤŤ
11	Skin - Leukocytes	₩ ∘%	Allograft rejection therapies	II	ŤŤŤ
12	Intestine - Muscle	\$ 1	Muscle growth agents	Ш	vs 🚗
13	vasc. Pancreas - Tumor		Anti-tumor therapy	II	ŤŤ
14	Bone	₹	Nanoparticle toxicity	1	ŤŤŤ
15	Bone marrow	₹	Erythropoiesis	1	ŤŤŤ
16	Skin - Hair follicles	* ((Hair growth agents	I	ŤŤ
17	Liver - Cardio	~ 6	Metabolite cardiotox	ı	İİ
18	Liver - Kidney		Kidney toxicity	I	iii
19	Skin - Lymph node	1	Hazard identification, Tier 3	ı	ŤŤŤ
20	vasc. Intestine – Lymph node - Tumor		Immuno-Oncology	I	ŤŤŤ
21	ADME-axis + 1	3 2 1	ADME-profile, PBPK, Tox	ı	iii
22	Blood-Brain-Barrier	× ×	Permeability & Neurotoxicity	ı	

The joint Team is the Key for our Success

www.tissuse.com

THANK YOU!

