

THOMAS HARTUNG, MD, PhD

DOERENKAMP-ZBINDEN CHAIR, EVIDENCE-BASED TOXICOLOGY

Molecular Biology & Immunology

DIRECTOR, CENTERS FOR ALTERNATIVES TO ANIMAL TESTING, CAAT JHU
AND CAAT-EU

Professor, Pharmacology & Toxicology, U. of Kostanz, Germany

THE CHALLENGE OF DISEASE

MODELING, QUALITY ASSURANCE AND

VALIDATION OF ORGAN-ON-CHIP MODELS

Copyrighted pictures removed

Consulting VP of Scientific Affairs

Conflicts of Interest

Consulting VP shareholder

Consultant

Licensed Pyrogen Test Consultant

Consultant Comp. Tox.

Green Chemistry Advisory Panel

TOXTRACK

Consultant, shareholder In preparation: Insilica LLC

Let's not beat a dead horse* talking once again about the shortcomings of animal tests

- For the 9 most common
 OECD tox tests,
 reproducibility is 81%,
 69% for toxic substances
- Mice and rat predict each other ~60%

Do not beat a dead horse.

No ACTUAL animals were harmed in the making of this cartoon.

*Completely inappropriate for CAAT

But we have to talk about:

Irreprodu-cell-bility

Cell tests have not less problems!

- Ca. 25% of cell lines misidentified
- 15-25% mycoplasma infected
- **Genetic instability**
- **Culture artifacts**

SCIENTIFIC REPORTS

OPEN Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function

Accepted: 13 June 2016

Andre Kleensang¹, Marguerite M. Vantangoli², Shelly Odwin-DaCosta¹, Melvin E. Andersen³ Kim Boekelheide², Mounir Bouhifd¹, Albert J. Fornace Jr⁴, Heng-Hong Li⁴, Carolina B. Livi⁵, Samantha Madnick², Alexandra Maertens¹, Michael Rosenberg⁵, James D. Yager⁶, Liang Zhaog1 & Thomas Hartung1,7

Pronounced genetic differences in frozen cells of the same lot from a cell bank

Kleensang (2016) Sci Rep 6, 28994

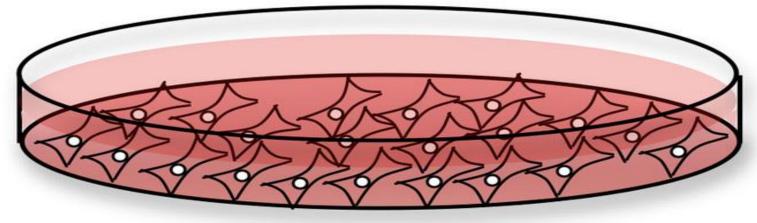
Genetic instability

MCF-7 cells - ~42,000 articles

Comparative Genome Hybridization:

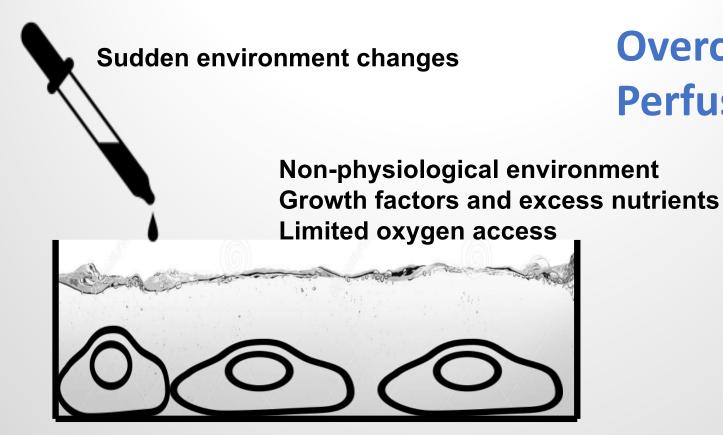
10% genome lost
50% of genes less than 2 copies
30% of genes more than 2
copies (up to 30)

Overcome by Stem cells


"Franken-cell"

Karyotyping

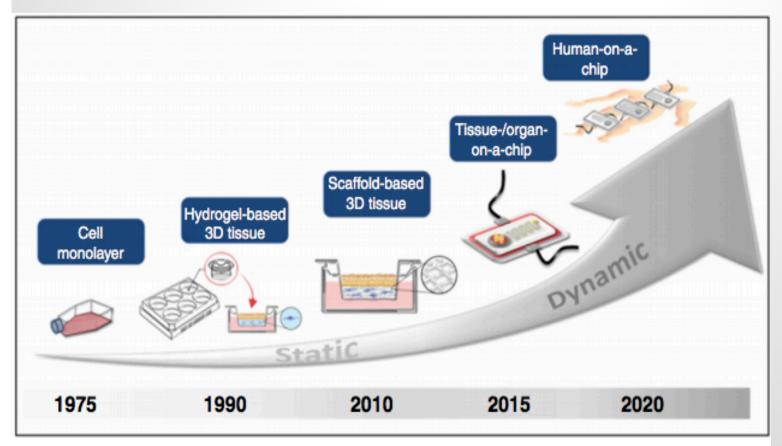
Traditional culture: pan-fried eggs "sunny side up"


Cell density ca. 0.1% of tissue, Dilution of all secreted factors

Single cell types
No tissue architecture
No organ functionality

Cell to cell contact about 2%, 49% plastic, 49% medium

Overcome by 3D organoids


Edge-effects
Minimal cell contacts
No demand on cell functions
Cell cross-contamination

No polarization, No flow

Overcome by

Perfusion (chip)

Evolution of Cell Culture - high-tech & business opportunity

Marx et al., Biologyinspired microphysiological system approaches to solve the prediction dilemma of substance testing using animals. ALTEX 2016, 33:272-321.

Marx et al., Biologyinspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX 2020, 37: in press.

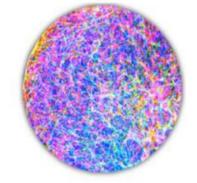
Chem Res Toxicol 2017, 30:43-52

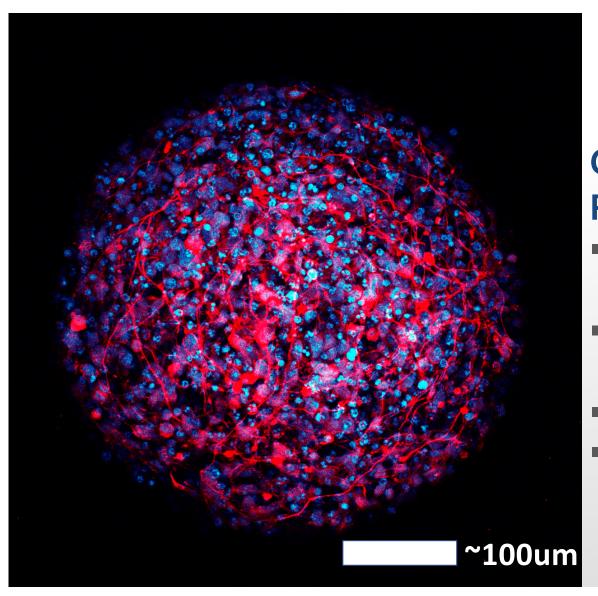

Perspective

pubs.acs.org/crt

21st Century Cell Culture for 21st Century Tox ology

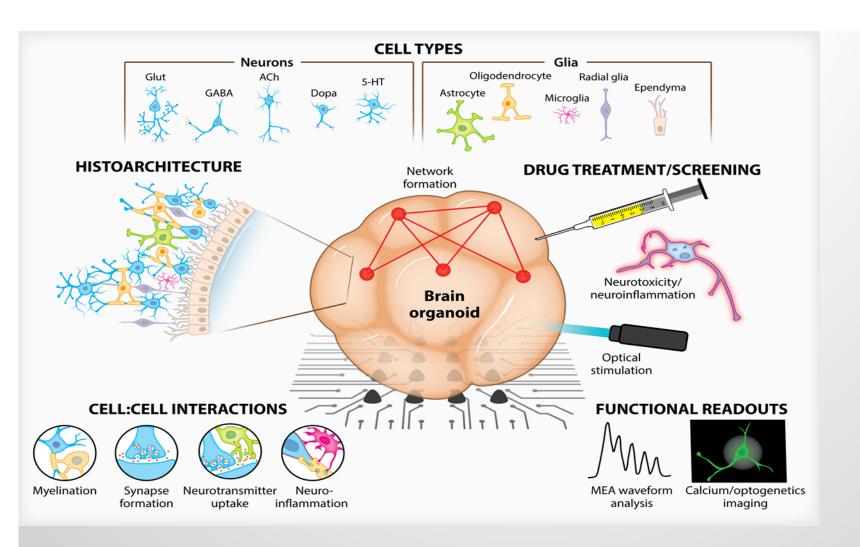
David Pamies[†] and Thomas Hartung*,[†],[‡]


20th century


Culture artifacts

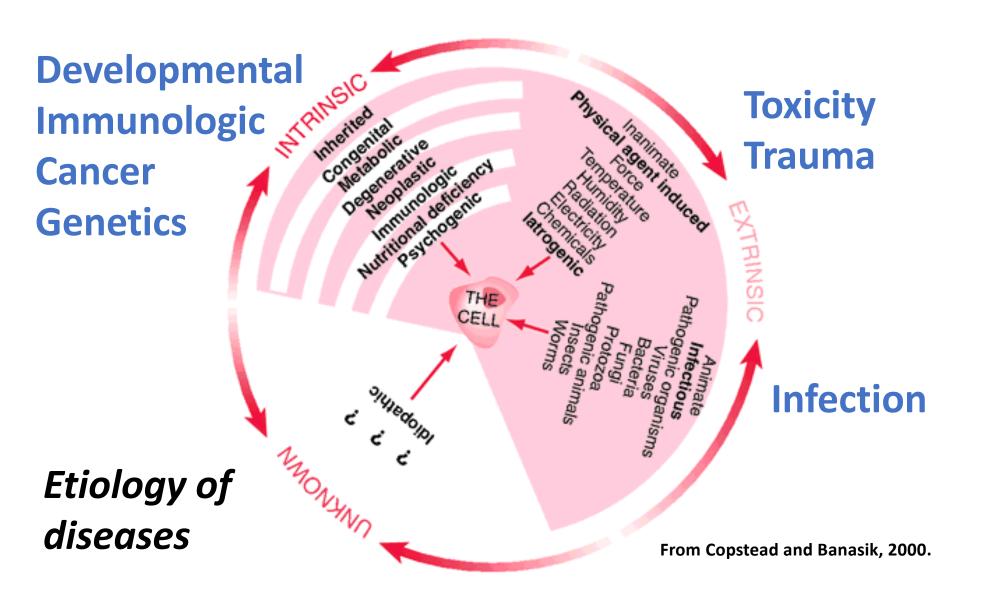
21st century

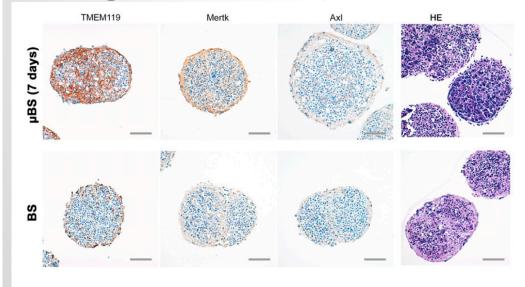
Life Sciences



Organo-typic

CAAT'S BRAINSPHERE PROJECT

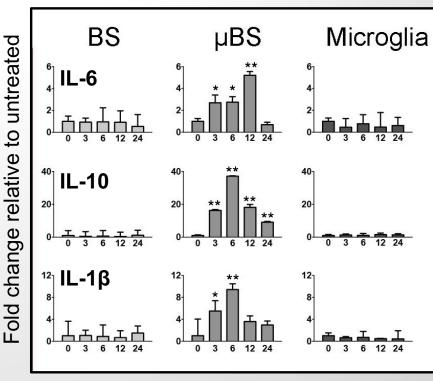

- FROM SKIN OF DONORS, INDIVIDUAL STEM CELLS
- IN 3 MONTHS THOUSANDS OF IDENTICAL ORGANOIDS
- Neurons communicating
- SOME BRAIN FUNCTIONALITY


Anderson et al., In Vitro Cellular & Developmental Biology 2021, Published online. Doi: 10.1007/s11626-020-00532-8

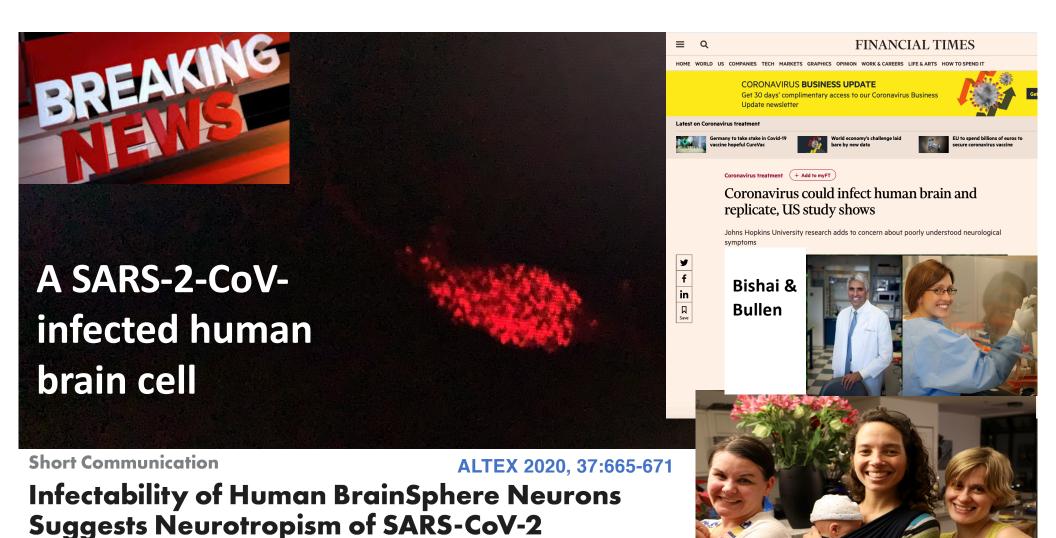
The next challenge is to model disease: From microphysiological to micropathophysiological models

Petri-dishes with different disease models

Microglia in BrainSpheres to study neuroinflammation

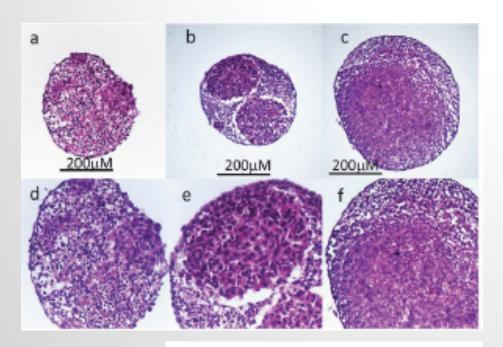

ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02766

Microglia Increase Inflammatory Responses in iPSC-Derived Human BrainSpheres


Celina Monteiro Abreu¹, Lucio Gama¹², Susanne Krasemann³, Megan Chesnut⁴, Shelly Odwin-Dacosta⁴, Helena T. Hogberg⁴, Thomas Hartung⁴⁵ and David Pamies⁴*

Hours post-treatment with LPS

Similar: Dengue & ZIKA virus



C. Korin Bullen^{#1}, Helena T. Hogberg^{#2}, Asli Bahadirli-Talbott¹, William R. Bishai¹, Thomas Hartung^{2,3,4}, Casey Keuthan⁵, Monika M. Looney¹, Andrew Pekosz⁴, J. Carolina Romero², Fenna C. M. Sillé^{2,6}, Peter Um¹

and Lena Smirnova^{2,#}

Hogberg, Sillé & Smirnova

Glioblastoma in BrainSpheres

Brain with tumor

Effect of Temozolomide and Doxorubicin treatment

A Human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine

Simon Plummer¹, Stephanie Wallace¹, Graeme Ballo², Roslyn Lloyd³, Paula Schiapparelli⁴, Alfredo Quiñones-Hinojosa⁴, Thomas Hartung^{6,5,6} & David Pamies^{6,7}

- DEVELOP DRUGS
- OPTIMIZE CHOICE OF DRUG

Toxicology and Applied Pharmacology 354 (2018) 101-114

Contents lists available at ScienceDirect

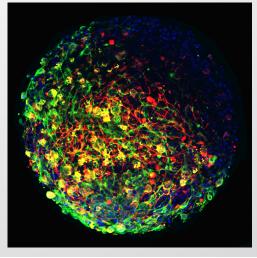
Toxicology and Applied Pharmacology

journal homepage: www.elsevier.com/locate/taap

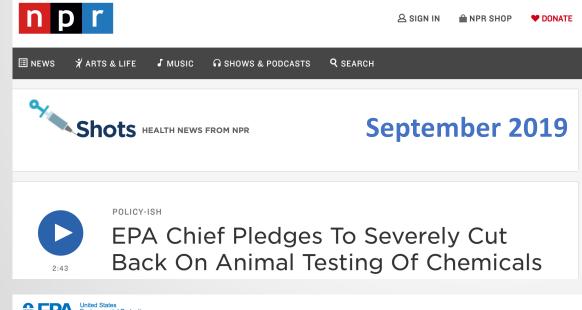
Rotenone exerts developmental neurotoxicity in a human brain spheroid model

David Pamies^a, Katharina Block^a, Pierre Lau^b, Laura Gribaldo^b, Carlos A. Pardo^c, Paula Barreras^c, Lena Smirnova^a, Daphne Wiersma^a, Liang Zhao^{a,d}, Georgina Harris^a, Thomas Hartung^{a,e}, Helena T. Hogberg^{a,*}

In conclusion, our BrainSpheres model has shown to be a reproducible and novel tool to study neurotoxicity and developmental neurotoxicity. Results models various diseases presented here support the idea that rotenone can potentially be a


developmental neurotoxicant.

Antidepressant Paroxetine exerts developmental neurotoxicity in an iPSC-derived 3D human brain model


Xiali Zhong^{1, 2}, Georgina Harris¹, Lena Smirnova¹, Valentin Zufferey³, Rita Sa⁴, Fabiele Baldino Russo⁵, Patricia C. Baleeiro Beltrao Braga⁵, Megan Chesnut¹, Marie-Gabrielle Zurich³, Helena Hogberg¹, Thomas Hartung^{6, 7}, David Pamies^{3, 1*}

The model identifies suspected developmental neurotoxicants and models various diseases

EPA-funded development of DNT assay

Multiplexed human
BrainSphere Developmental
Neurotoxicity test for six key
events of neural development

EPA Awards Nearly \$850,000 to Johns Hopkins University to Advance Research on Alternative Methods to Animal Testing

Smirnova, Hartung, Berlinicke, Gracias

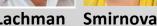
CHD8 knockout BrainSpheres (CRISPR-CAS9) as disease model

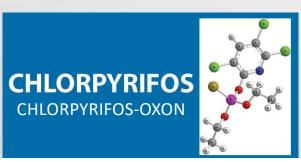
CHD8^{+/+}

iPSC carrying CHD8 mutation along with control cell line

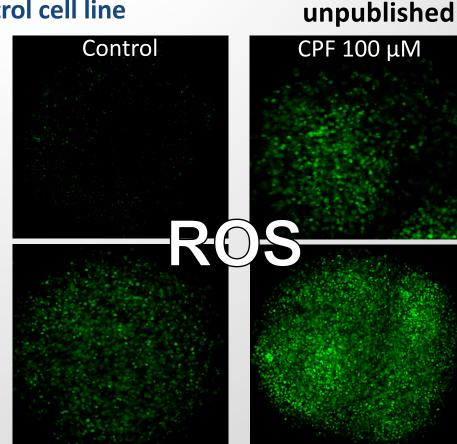
BrainSpheres from iPSC with k/o CHD8

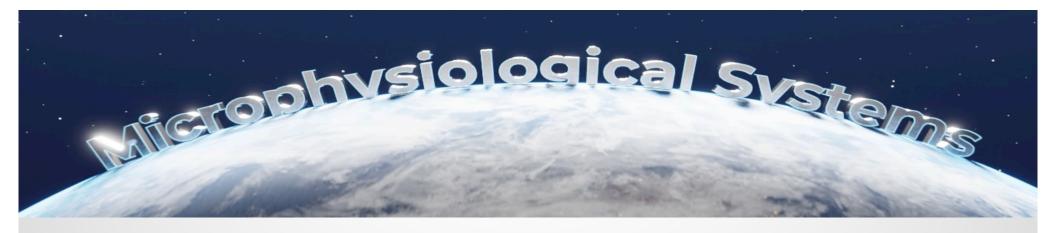
CHD8+/+ - control iPSC


CHD8^{+/-} - heterozygous knockout


CHD8^{+/+} CHD8^{+/-}

CHD8


GAPDH



~35 organizations
Scientific Advisory Board

New date!

Virtual Jun & Dec 2021 New Orleans, Jun 2022

Hosts: Suzie Fitzpatrick, FDA

Thomas Hartung, Hopkins

Don Ingber, Harvard

Letter

ALTEX 2020, 37: 490-492

Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0) – Draft for Stakeholder Discussion and Call for Action

David Pamies¹, Marcel Leist^{2,3}, Sandra Coecke⁴, Gerard Bowe⁴, Dave Allen⁵, Gerhard Gstraunthaler⁶, Anna Bal-Price⁴, Francesca Pistollato⁴, Rob deVries^{7,8}, Thomas Hartung^{2,9} and Glyn Stacey^{10,11,12}

GCCP 2.0 Draft published

- Stakeholder discussion
- Editor workshop
- Funding bodies

Register at: CAAT@jhu.edu

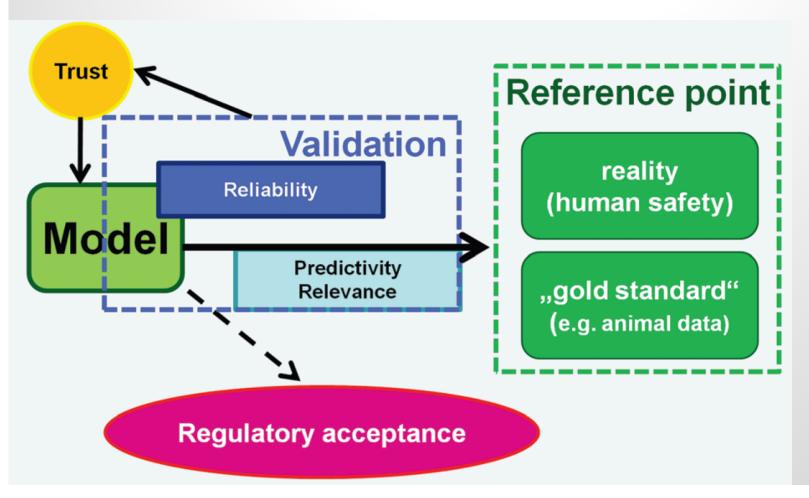
ALTEX 2019, 36:3-17

"In God we trust.
All others must bring data."
W. Edwards Deming
(1900-1993)
Professor and author

Food for Thought ...

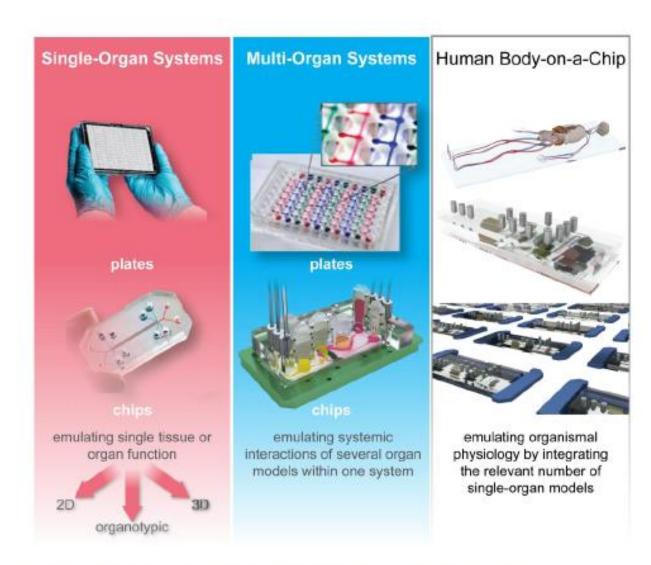
Toward Good In Vitro Reporting Standards

Thomas Hartung^{1,2}, Rob de Vries³, Sebastian Hoffmann⁴, Helena T. Hogberg¹, Lena Smirnova¹, Katya Tsaioun¹, Paul Whaley⁵ and Marcel Leist²


Template for the Description of Cell-Based Toxicological Test Methods to Allow Evaluation and Regulatory Use of the Data

Alice Krebs^{1,2}, Tanja Waldmann¹, Martin F. Wilks³, Barbara M. A. van Vugt-Lussenburg⁴, Bart van der Burg⁴, Andrea Terron⁵, Thomas Steger-Hartmann⁶, Joelle Ruegg⁷, Costanza Rovida⁸, Emma Pedersen⁹, Giorgia Pallocca^{1,8}, Mirjam Luijten¹⁰, Sofia B. Leite¹¹, Stefan Kustermann¹², Hennicke Kamp¹⁴, Julia Hoeng¹⁴, Philip Hewitt¹⁵, Matthias Herzler¹⁶, Jan G. Hengstler¹⁷, Tuula Heinonen¹⁸, Thomas Hartung^{8,19}, Barry Hardy²⁰, Florian Gantner²¹, Ellen Fritsche²², Kristina Fant⁹, Janine Ezendam¹⁰, Thomas Exner²⁰, Torsten Dunkern²³, Daniel R. Dietrich²⁴, Sandra Coecke¹¹, Francois Busquet^{8,25}, Albert Braeuning²⁶, Olesja Bondarenko²⁷, Susanne H. Bennekou²⁸, Mario Beilmann²⁹ and Marcel Leist^{1,2,8}

The next GCCP project


ALTEX 2019, 36:682-699

What formal validation is about

Provide regulators the evidence whether they can trust a new / alternative method

Required only for regulatory methods, but helpful for any test

Good luck, validating this in ring trials!

- Number of variables
- Moving targets
- Costs and low throughput
- Lack of reference points
- Freezing in time in an area of fast change

Fig. 3: Types of MPS used for emulation of human biology in vitro

We need to adapt Validation

ALTEX 27 (2010) 253-263

Evidence-Based Toxicology – the Toolbox of Validation for the 21st Century?

Thomas Hartung

Johns Hopkins University, Bloomberg School of Public Health, Dept. Environmental Health Sciences, Center for Alternatives to Animal Testing (CAAT), Doerenkamp-Zbinden Chair for Evidence-based Toxicology, Baltimore, MD, USA, and Professor of Pharmacology and Toxicology, University of Konstanz, Germany

Food for Thought ... Mechanistic Validation

ALTEX 30 (2013) 119-130

Thomas Hartung ^{1,2}, Sebastian Hoffmann ^{2,3}, and Martin Stephens ¹

¹Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA; ²University of Konstanz, CAAT-Europe, Germany; ³seh consulting, Paderborn, Germany

The difficulty lies not in the new ideas, but in escaping from the old ones.

John Maynard Keynes

(1883 - 1946)