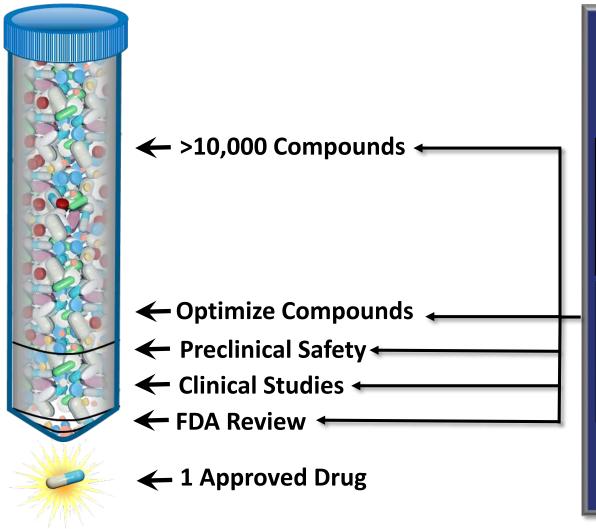
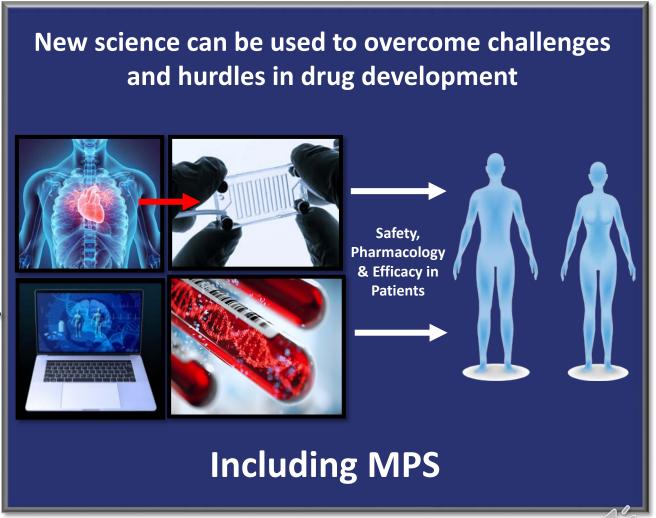


Advancing Translational Models & Tools into the Drug Review Process: Opportunities for MPS

David Strauss, MD, PhD

Office of Clinical Pharmacology | Office of Translational Sciences


Center for Drug Evaluation and Research



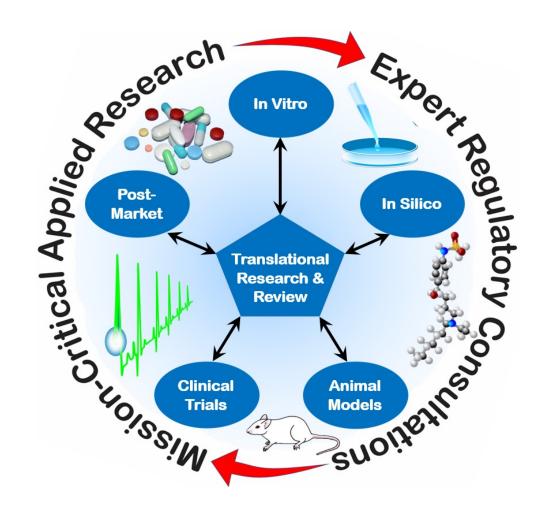
Translational Models and Tools to Advance Drug Development

Drug Development

Translational Models and Tools

Translating New Science Into the Drug Review Process: FDA's Division of Applied Regulatory Science (DARS)

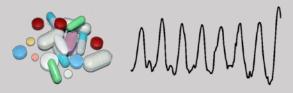
Regulatory Science: Review

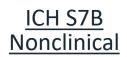


Translating New Science Into the Drug Review Process: The US FDA's Division of Applied Regulatory Science

Rodney Rouse, DVM, MBA, PhD¹, Naomi Kruhlak, PhD¹, James Weaver, PhD¹, Keith Burkhart, MD¹, Vikram Patel, PhD¹, and David G. Strauss, MD, PhD¹

Therapeutic Innovation & Regulatory Science 2018.


DARS was created to move new science into the drug review process and close the gap between scientific innovation and drug review



Learning from Our Recent Updates to the ICH Regulatory Guidelines for Cardiac Safety of New Drugs

Normal Heart Rhythm <u>Drug-Induced ABNORMAL</u> Heart Rhythm!

International Council for Harmonisation (ICH)
Regulatory Guidelines implemented in 2005 have
limitations

ICH E14 Clinical

GUIDANCE DOCUMENT

E14 and S7B Clinical and Nonclinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential--Questions and Answers

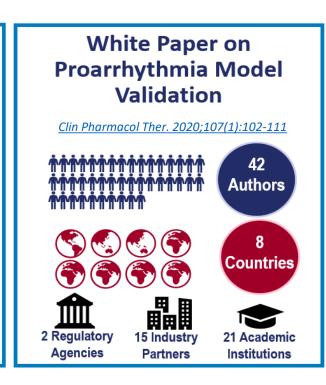
Draft Guidance for Industry

SEPTEMBER 2020

Nonclinical Models Reduce Number of Clinical Studies

Studies

Nonclinical
Models Inform
Approval
Decisions &
Labeling


Possible → Low Risk?

/

Example of Recent ICH Updates for Cardiac Safety: Collaborative Process to Increase the Role of Nonclinical Assays

ICH S7B Updates: Assay Standards and Best Practices

- Quality control criteria to document cell health
- Positive/negative controls
- Principles for proarrhythmia models (including qualification)
- How to report data to regulators to demonstrate quality

ICH E14/S7B Updates as a Potential Model for Other Safety Areas

Clinical Pharmacology & Therapeutics

FDA Perspective

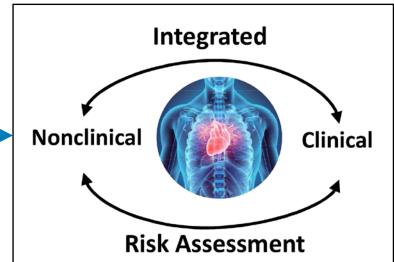
REVIEW 🙃 Open Access

Translational Models and Tools to Reduce Clinical Trials and Improve Regulatory Decision-Making for QTc and Proarrhythmia Risk (ICH E14/S7B Updates)

David G. Strauss X, Wendy W. Wu, Zhihua Li, John Koerner, Christine Garnett

First published: 17 December 2020 | https://doi.org/10.1002/cpt.2137

Clinical Pharmacology & Therapeutics

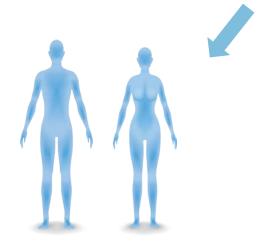

Industry Perspective

Review Open Access C () () ()

Time for a Fully Integrated Nonclinical-Clinical Risk Assessment to Streamline QT Prolongation Liability Determinations: A Pharma Industry Perspective

Hugo M. Vargas ☒, Michael G. Rolf, Todd A. Wisialowski, William Achanzar, Anthony Bahinski, Alan Bass, Charles T Benson, Khuram W. Chaudhary, Nicolas Couvreur, Corina Dota ... See all authors ∨

First published: 31 August 2020 | https://doi.org/10.1002/cpt.2029



"The integrated nonclinical-clinical assessment here can also serve as a model for other safety areas in drug development and regulatory evaluation."

Opportunities for MPS to Impact the Regulatory Evaluation

of Drugs

1. Predict Safety in Patients

2. Reduce Clinical Drug
Interaction Studies

3. Predict Efficacy in Patients

Advance Drugs in Development with Potentially False-Positive Safety Signals

<u>Safety need</u>: IQ industry-wide survey for attrition of small molecules due to unacceptable toxicity in animal studies

- Late discovery phase terminations:
 - Cardiovascular (18%)
 - Liver (16%)
 - Gastrointestinal (GI) (12%)
 - Central nervous system (CNS) (13%)
- IND-enabling phase terminations:
 - Cardiovascular (27%)
 - o Testis (11%)
 - o CNS (11%)
 - o Kidney (9%)
 - o Liver (5%)

Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications.

Lab Chip. 2020 Mar 17;20(6):1049-1057

Example of Complex In Vitro Model (CIVM) Data Submitted to FDA

New Drug
Application

- Other drugs in class discontinued from clinical development due to liver toxicity
- Some liver enzyme elevations in rat studies
- Complex in vitro models with 3D spheroids combined with in silico modeling
 - Reproduced observed liver toxicity of other drugs
 - Suggested new drug has significantly reduced risk of liver toxicity
- <u>Regulatory Impact</u>: Data contributed to liver toxicity assessment as described in supervisory pharmacology-toxicology review for NDA

Reduce Clinical Drug Interaction Studies

- Problem: Impractical to evaluate every drug combination in clinical trials
- FDA Guidance documents describe how in vitro studies (in combination with PBPK modeling) inform the need for conducting clinical DDI studies
- However, there are limitations
 opportunity for MPS

Limitations of Conventional In Vitro Models + PBPK

Physiologically Based Pharmacokinetic Modeling in Regulatory Science: An Update from the U.S. Food and Drug Administration's Office of Clinical Pharmacology J Pharm Sci. 2019 Jan;108(1):21-25.

Underpredict Clinical CYP3A Induction

- Drug may induce multiple enzymes (not accounted for)
- Dual enzyme time-dependent inhibitor and inducer
- Effect of inhibitors for phase II enzymes

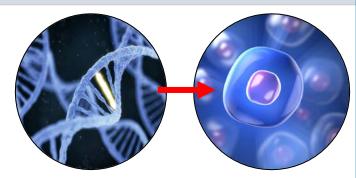
Difficulty with Transporter-Mediated DDI

- Incongruence between in vitro and in vivo transporter behavior
- Lack of correlation between transporters' abundance and activity
- Lack of knowledge about drug exposure at the site of action

Opportunities for MPS

Opportunities For MPS to Impact Clinical Studies

- ✓ Reduce the need for clinical DDI studies
- ✓ Impact the timing of clinical DDI studies


In Vitro Models to Expand Drug Approvals for Rare Diseases

Rare Disease Drug Development Challenges

- Small number of patients
- Thousands of genetic variants

Innovative Approach

Test drug efficacy in cell models with each genetic variant

Cystic Fibrosis

- Drug previously approved for 10 genetic variants
- Expanded approval to 24 more based on cellular models

Fabry's Disease

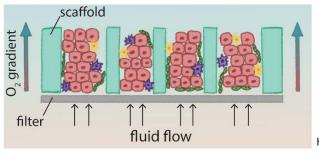
Affects Many Organ Systems

- ✓ Clinical trial included 63 patients with 40 genetic variants
- ✓ Drug approved for 348 genetic variants based on cell model

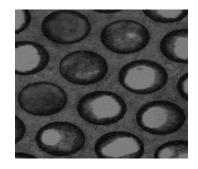
-INDICATIONS AND USAGE-----

KALYDECO is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator indicated for the treatment of cystic fibrosis (CF) in patients age 4 months and older who have one mutation in the *CFTR* gene that is responsive to ivacaftor based on clinical and/or *in vitro* assay data. (12.1, 14)

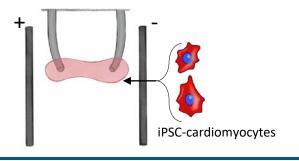
--INDICATIONS AND USAGE--


GALAFOLD is an alpha-galactosidase A (alpha-Gal A) pharmacological chaperone indicated for the treatment of adults with a confirmed diagnosis of Fabry disease and an amenable galactosidase alpha gene (GLA) variant based on in vitro assay data. (1, 12.1)

- Extensive laboratory experience from FDA/CDER DARS staff with specific assays was critical to assess quality, reproduce results and gain confidence for in vitro data to serve as primary efficacy data for expanding indications
- Summary publication is forthcoming


FDA/CDER DARS Research on Liver and Heart MPS

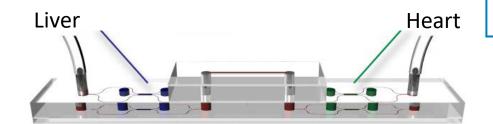
1. Liver MPS Using Primary Cells



Assayed Output

- Cell death
- Metabolism
- Biomarkers
- Gene expression
- Drug distribution

2. Engineered Heart Tissue (EHT)



Assayed Output

- Contractility
- Calcium cycling
- Length of contractions

3. Heart-Liver System

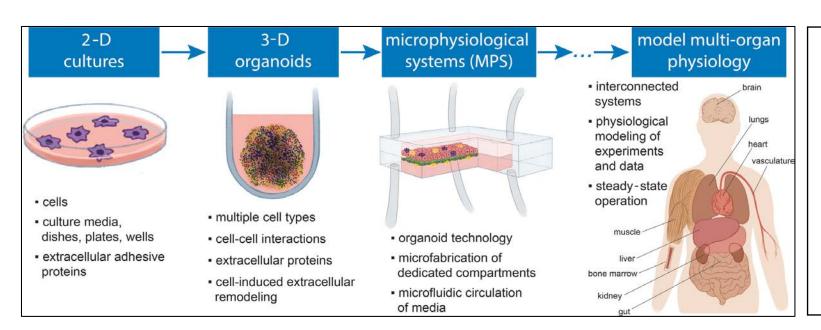
Connected system designed to use <u>iPSC-derived cells</u>

FDA/CDER Microphysiological Systems Laboratory

Review 🙃 Open Access 🕲 🚯

Liver Microphysiological Systems for Predicting and Evaluating Drug Effects

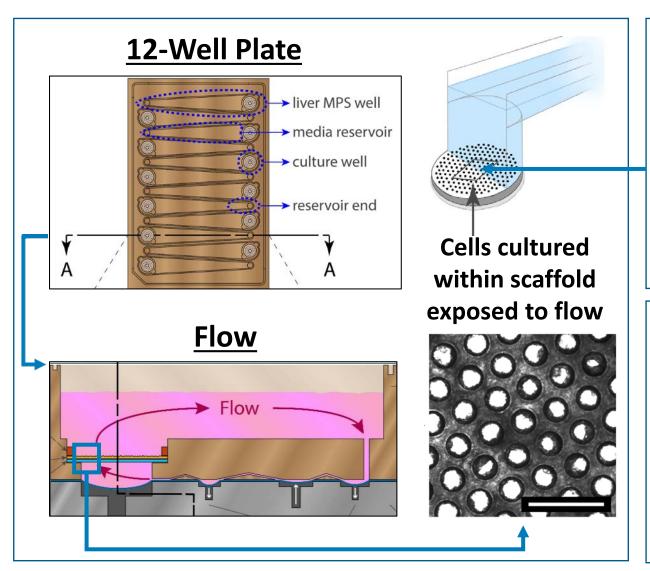
Alexandre J. S. Ribeiro ⋈, Xinning Yang, Vikram Patel, Rajnikanth Madabushi, David G. Strauss

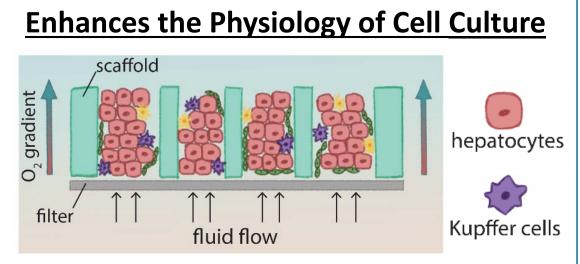

Clinical Pharmacology & Therapeutics 2019;106:139-47.

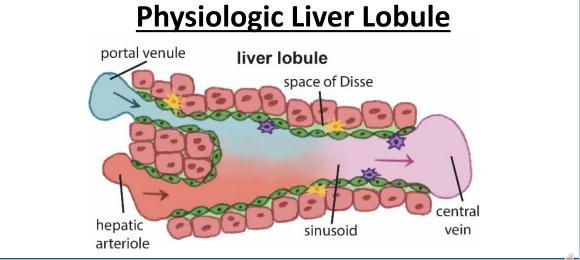
ARTICLE 🖸 Open Access 💿 🕦 😑

Characterizing the Reproducibility in Using a Liver Microphysiological System for Assaying Drug Toxicity, Metabolism and Accumulation

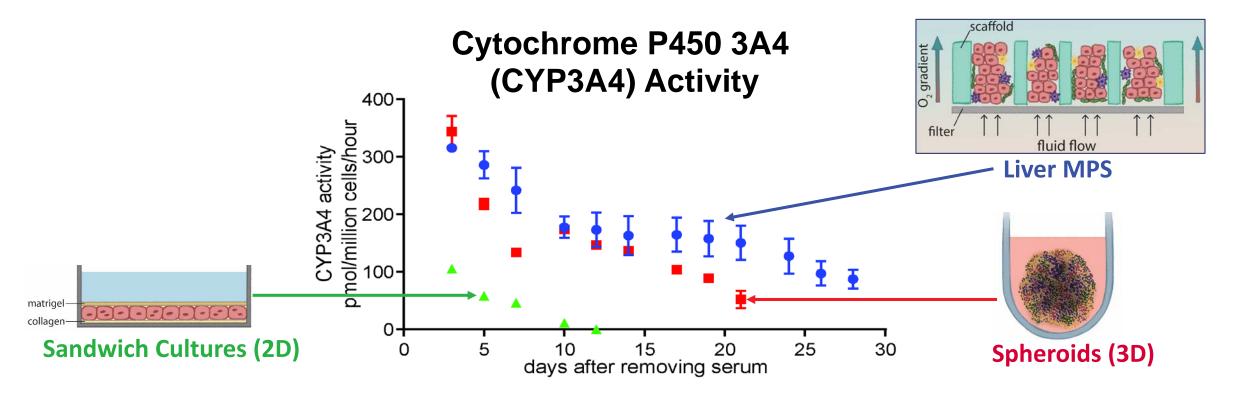
Andres Rubiano, Amruta Indapurkar, Ryosuke Yokosawa, Alina Miedzik, Barry Rosenzweig, Ayesha Arefin, Chloe M. Moulin, Keri Dame, Neil Hartman, Donna A. Volpe, Murali K. Matta, David J. Hughes, David G. Strauss, Tomasz Kostrzewski, Alexandre J.S. Ribeiro ⋈

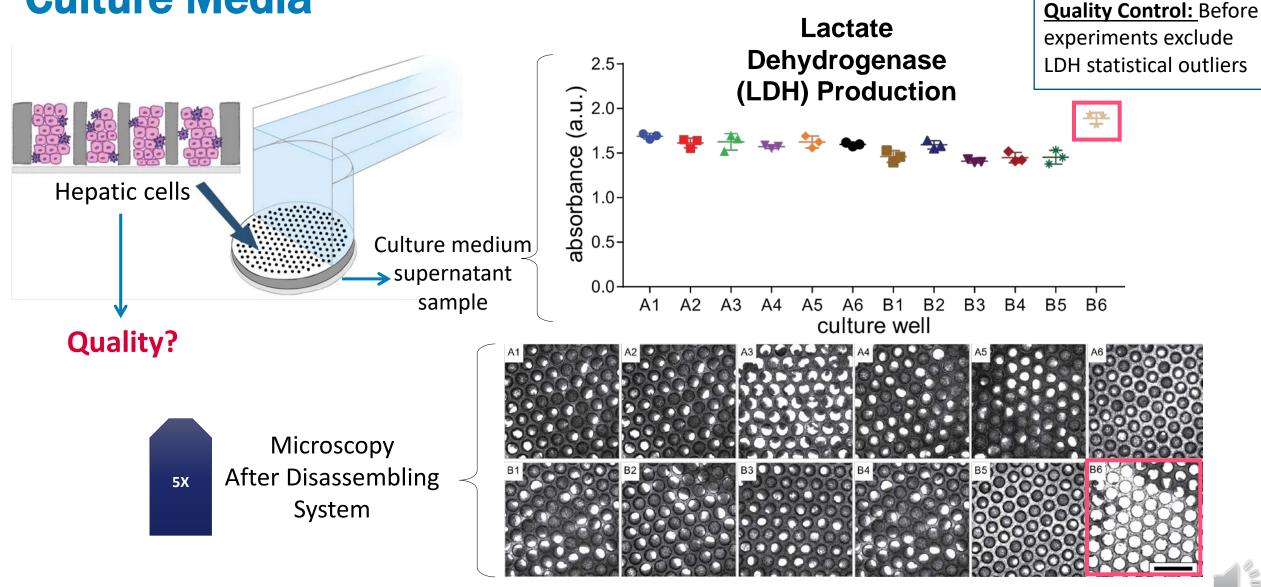

Clinical & Translational Science 2020 [epub].



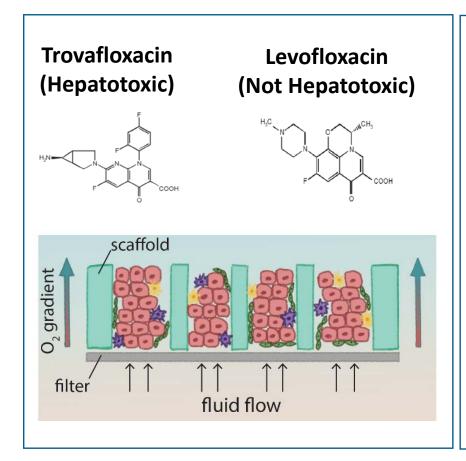

MPS Questions

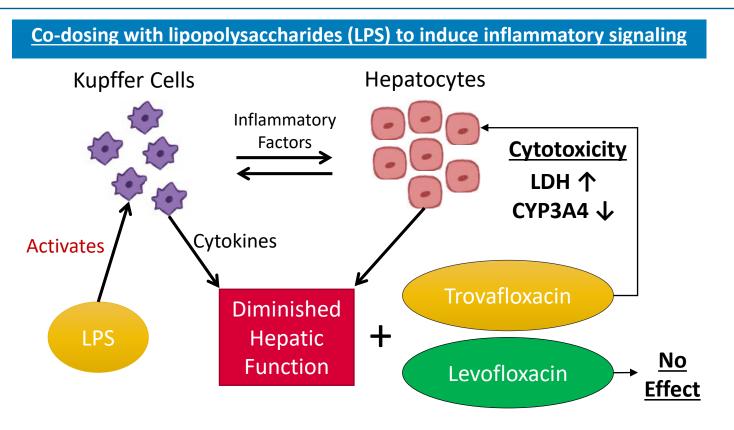
- What is the performance of MPS compared to 2D cultures and 3D organoids?
- For MPS to be used for regulatory applications in drug development, can criteria to ensure reproducibility of results be developed?


MPS Cultures Hepatic Cells in 3D with Fluid Flow



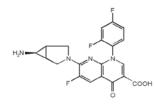
Hepatocyte Function: 2D vs. Spheroid vs. MPS

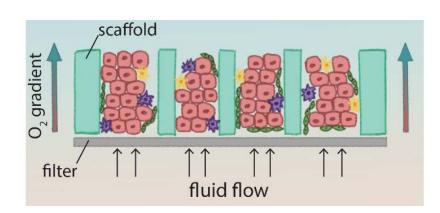



- Hepatocytes in MPS were more functionally stable than those in other culture platforms
 - CYP3A4 activity (above) and albumin secretion remained prominent for >18 days
 - Functional decline occurred earlier in spheroids (12 days) and sandwich cultures (7 days)

Proof of Principle: MPS Quality Control Based on Assaying Culture Media

Liver MPS Reproduced Hepatotoxicity of Drug Withdrawn from Market Due to Causing Idiosyncratic Acute Liver Failure and Death

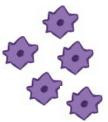



Liver MPS detects inflammatory-induced drug toxicity

Liver Toxicity Reproducibility

Trovafloxacin (Hepatotoxic)

Levofloxacin (Not Hepatotoxic)



Similar Results Between Two Sites

 Similar Results Within a Site When Using Different Batches of Kuppfer Cells

 Identified Quality Control Criteria for Kuppfer Cells

General Considerations and 7 Recommendations: As Outlined In Supplement to

Characterizing the Reproducibility in Using a Liver Microphysiological System for Assaying Drug Toxicity, Metabolism and Accumulation

Andres Rubiano, Amruta Indapurkar, Ryosuke Yokosawa, Alina Miedzik, Barry Rosenzweig, Ayesha Arefin, Chloe M. Moulin, Keri Dame, Neil Hartman, Donna A. Volpe, Murali K. Matta, David J. Hughes, David G. Strauss, Tomasz Kostrzewski, Alexandre J.S. Ribeiro ⋈

Examples:

- Establish quality control criteria that ensure proper assembly and preparation of functional systems
- 2. Test cellular properties to enable the intended system use

IQ MPS Organ-Specific and ADME Paper Recommendations

IQ-MPS has published dedicated papers on ADME, liver, kidney, GI, lung, skin & biologics (CNS/BBB & cardiovascular in development)

www.igmps.org/publications

Example: Liver MPS Development Guidelines for Safety Risk Assessment

"... guidance on best approaches to benchmark liver MPS based on 3 stages of characterization ..."

Stage 1 Stage 3 Stage 2 (Basic Function) (Deep Characterization) (Safety Testing)

- Urea synthesis (>37ug)
- Albumin production (>56ug)
- ADME gene set (stability)
- Metabolism
- Histology
- Bile homeostasis
- 20 compound
- safety test set

Stage 1: Characterize Basic Function

	Measure	Function assessed	Specifications
	Albumin production	Liver transcription, translation, processing, and export function	>37 µg per day per 1 million hepatocytes Daily production rates should remain stable across a 14 day time frame

Stage 2: Deep Characterization

Measure	Function assessed	S	Specifications		
Alanine aminotransferase (ALT), lactate dehydrogenase (LDH), miR122, cytokines	Indications of cell damage and MPS stability over time		• ≤30% C.V. for mean daily across a 14 day time frame		
Baseline and induced metabolic enzymes functional activity	Liver phase I/II metabolizing enzymes capability (measure of CYP450 enzymatic		tage	3: Saf	
using a set of standard probe substrates	capacity and induction) Benchmark levels specified for each enzyn compared to fresh hepatocytes and	Tool toxic	l liver cant	DILI presentation	
	demonstrate <30% CV (as measure of stability of enzymatic activity rates over tir	Sitax	xsentan	ALT elevations 2 weeks	
		Cloz	apine	ALT elevations 1 week	
		Diclo	ofenac	ALT elevations within 1 mon	
Transporter function and bile acid homeostasis: uptake,	Measures of daily rates of transporter substrate and bile acid uptake, metabolisr	Zilet	iton	ALT elevations 6 weeks	

ago 2. Safety Testing

Acute liver failure

Oligonucleotide.

hepatic steatosis

ALT elevations and

Liver failure

Liver failure

Trovafloxacin

Mipomersen

Nefazodone

Pemoline

≤30% C.V. for mean daily baseline release levels

Liver phase I/II metabolizing enzymes capability (measure of CYP450 enzymatic	Stage 5. Safety festing					
capacity and induction) Benchmark levels specified for each enzyn compared to fresh hepatocytes and	Tool liver toxicant	DILI presentation	Mechanism of toxicity	Appropriate less toxic comparator		
demonstrate <30% CV (as measure of stability of enzymatic activity rates over tir	Sitaxsentan	ALT elevations after 2 weeks	Reactive metabolites, mitochondrial toxicity, BSEP inhibition ^{76–78}	Ambrisentan		
	Clozapine	ALT elevations after 1 week	Reactive metabolite ^{80–82}	Olanzapine		
	Diclofenac	ALT elevations within 1 month	Reactive metabolites, mitochondrial dysfunction, bile acid dysfunction ^{84–87}			
Measures of daily rates of transporter substrate and bile acid uptake, metabolism conjugation, and export in media	Zileuton	ALT elevations after 6 weeks	Reactive metabolite formation ^{88,89}			
	Fialuridine	Liver failure after 12 weeks of dosing	Mitochondrial toxicity as primary event causing lactic acidosis, microvesicular steatosis ⁹⁰	FIRU [1-(2'-fluoro-2'-deoxy- ribofuranosyl)-5-iodouracil		
Allows comparison to that of normal hum in vivo liver architecture and cellular morphology	Tolcapone	ALT elevations, acute liver failure	Reactive metabolite, mitochondrial toxicant, BSEP inhibition ^{45,91}	Entacapone		
	Asunaprevir	ALT elevations after 2 weeks ⁹³	Alterations in bile acids			
	Troglitazone	ALT, bilirubin elevations after 18 weeks	Reactive metabolites, BSEP inhibition ^{94–96}	Pioglitazone		
	Telithromycin	ALT elevations after 1 day	Bile acid alterations 98,99			

Immune mediated100

Immune mediated102

Reactive metabolites.

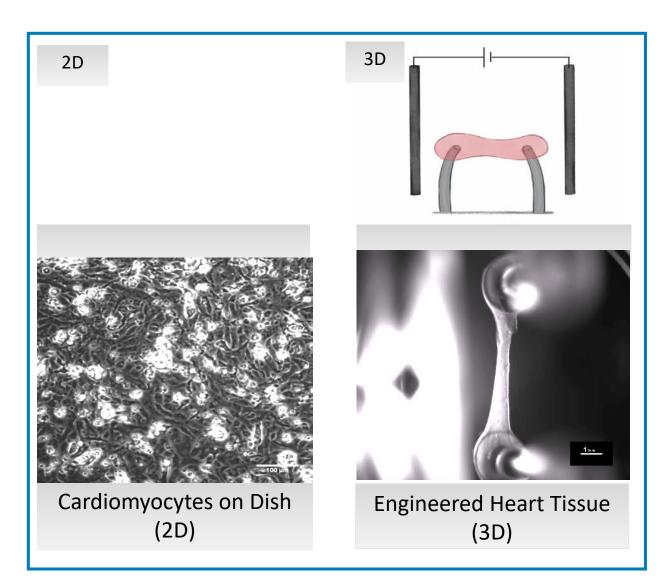
BSEP inhibitor, mitochondrial tox54,104

Lipid alterations 103

Levofloxacin

Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry

metabolism, and export


Histology of MPS

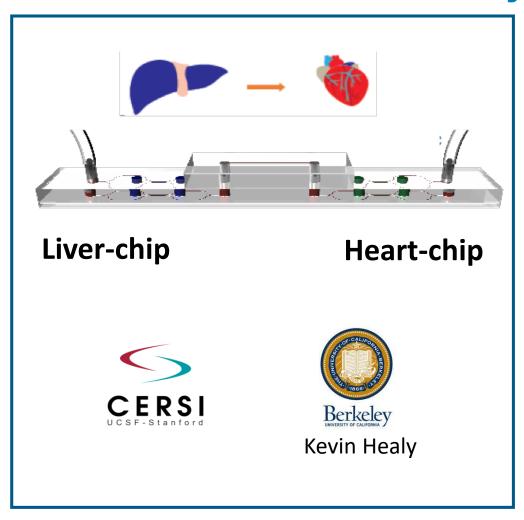
Lab Chip. 2020 Jan 21;20(2):215-225.

Urea synthesis

Baseline quantitative gene expression profiling

Additional FDA/CDER Research: Differences in Drug Response between 2D and 3D Approaches to Culturing iPSC-Cardiomyocytes

• Evaluating contractility endpoints:

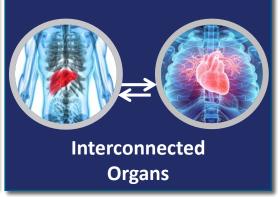

- Reproducibility of distinct lines of iPSC-cardiomyocytes
- Response to inotropic agents
- Cardiotoxicity of oncology drugs

• Evaluating calcium cycling endpoints:

- Concordance with contractility endpoints
- How to dissect drug mechanism

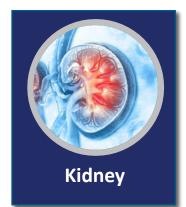
Additional FDA/CDER Research: Characterization of Combined Heart-Liver System

- Characterize function reproducibility of additional liver and heart MPS that utilizes iPSC-differentiated cells:
- Test interconnecting heart-liver systems:
 - Effects of liver metabolism/drug interactions on cardiotoxicity
 - Dual liver-heart drug toxicity



Translating MPS Into the Drug Review Process at FDA

FDA/CDER Research Discussed:



Planned FDA/CDER Research:

SUMMARY:

- MPSs can yield reproducible results if system preparation, drug administration and measurement schedules are carefully planned
 - Assess drug adsorption and stability of metabolites and specific endpoints
- Quality control criteria for cells and functional MPSs can be assessed prior to drug experiments to increase reproducibility
 - Similar principles have been implemented in ICHS7B Guideline updates
- Full characterization and qualification for use in drug development depends on the specific context of use

Thank You!

Integrated Cellular Systems Laboratory Led by Alexandre Ribeiro

Keri Dame

Barry Rosenzweig

Iveth Garcia

Ayesha Arefin

Andrés Rubiano

Melissa Mendoza Chloe Moulin

Moran Choe

Ryosuke Yokosawa

Additional Acknowledgements

Paul Brown Suzanne Fitzpatrick Karen Boyd Donna Mendrick Tracy MacGill **Kyung Sung** Johnny Lam Barry Rosenzweig Donna Volpe Neil Hartman Keri Dame Ayesha Arefin

Vikram Patel Jim Weaver Kristina Howard Shiew-Mei Huang Raj Madabushi Xinning Yang Anu Ramamoorthy Rodney Rouse

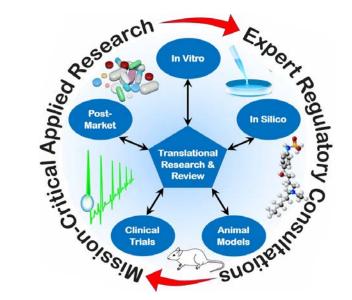
DARPA:

Bradley Ringeisen Gina Kost Rebekah Cecil David Krizman

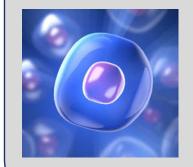
CN Bio Innovations: Tom Kostrzewski **David Hughes**

University of California: **Kevin Healy** (Berkeley) Ed Hsiao (San Francisco)

Links for Additional Information


Division of Applied Regulatory Science (DARS)

Regulatory Science: Review


Translating New Science Into the Drug Review Process: The US FDA's Division of Applied Regulatory Science

Rodney Rouse, DVM, MBA, PhD1, Naomi Kruhlak, PhD1, James Weaver, PhD1, Keith Burkhart, MD1, Vikram Patel, PhD1, and David G. Strauss, MD, PhD

Therapeutic Innovation & Regulatory Science 2018.

Laboratory Cellular Models

- · Organs-on-a-chip (workshop)
- · Clinical pharmacology
- · Cellular efficacy data (cystic fibrosis)

Publications link

Biomarkers

- Organ injury biomarkers
- · Human immune system
- Respiratory depression **Publications Link**
- - Heart Safety Biomarkers
 - Opioids Effects on **Breathing Biomarkers**
 - Biologics and biosimilars **Publications link**

Computer Models

- · Systems pharmacology & heart safety
- Chemical & biomedical informatics

Publications link

Other Clinical Studies

- · Sunscreen absorption studies (2 JAMA publications)
- Most read JAMA article of 2019
- Ranitidine metabolites (NDMA) (1 ongoing study)

DARS: Mission/Vision Research Overview Video Annual Report Clinical Trials DIA Podcast JAMA News Article

