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Research
Tissue engineering approaches to improving human health:

 Regenerative medicine: engineering functional human
tissues/organs including heart, lung, joints and vasculature

« “Organs-on-a-chip”: human tissue models for biological
research, study of disease and development of therapies


http://columbia.edu

Key requirements:

 Modular, configurable
« To form physiological units; vary tissue scaling and order

« Biological specificity
* Individualized settings, defined genetics (iPSCs)

« Stable tissue phenotypes
 Weeks to months

« Tissue connectivity
 Individual control, links by vascular perfusion

e i * Functional readouts in real time
- ’ﬁﬂ * On-line, longitudinal studies

) | + Building complexity

s T — « Co-culture, vascularization, innervation, immune cells

Columbla Univer




Modularity: plug and play”

Ronaldson-Bouchard et al (in revision)



Biologic specificity using IPS cells:
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A menu of matured, functional human tissues:
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Example: human bone marrow with hematopoiesis
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T-tubules

Example: Human heart
muscle:

Oxidative metabolism
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Example: Neuromuscular junction

Vila et al, Theranostics (2019)
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Myasthenia gravis: 0% response
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Connecting tissues into physiological units:

Innervated Liver neurons

Vascular tumor
perfusion

Vascular flow with circulating cells
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Beta-cell organoids
cultured in the platform
(Egli, Creuset)

Studies of nociception
(de Nooij, Bunnett)




Modeling anticancer drug efficacy and cardiac safety:
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Summary and challenges: Biology

Summary: Multi-tissue platforms can serve as high-fidelity models for studies
of development, regeneration, organ specific and systemic diseases. iPS cells
allow individualized studies of disease and biological diversity.

mp Establish and maintain mature tissue phenotypes
 How much is enough?
* Benchmarking and validation

= Bmld complexity
How simple is complex enough?
* Multiple tissue types, innervation, vascularization, immune system...
« iPS-based cells for biological compatibility
»  Integrated multi-tissue models for studying systemic patho/physiology

Enable studies of biological diversity
« Sex, age, race, status of health or disease as experimental variables



Summary and challenges: Engineering

m) “Biologist-friendly” platforms
« Standardized designs
* Interfaces with imaging and analytics
« Commercial availability

= “Plug and play” designs for optimizing tissue scaling and order
« Scaling by volume, metabolism, blood flow...?
« Configurability to support a broad range of experimental needs

m) Recapitulating tissue and organ functions
« Minimally functional units capturing specific cell/tissue/organ responses
« Real time measurements of biological parameters at cell/tissue levels
* Designing dynamic systems with biological sensing and actuation
 Integration of different types of data, at different scales, over time
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