

Pharma Perspective on Animal Microphysiological Systems

Innovation and Quality consortium IQ Microphysiological Systems (MPS) Affiliate

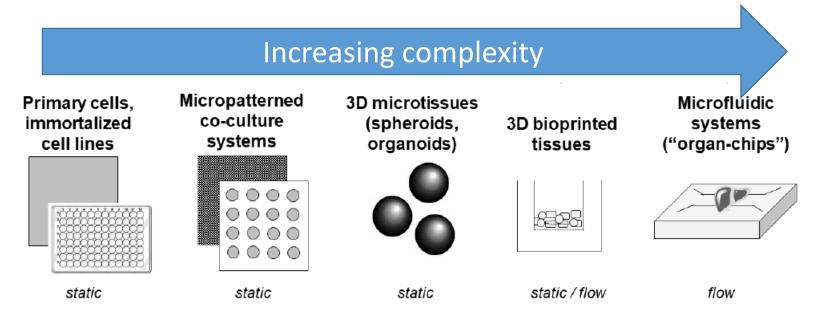
PJ Devine, Senior Principal Scientist Novartis Institutes for BioMedical Research Jan 19-20, 2020

Who I am

Current Position

- Patrick "PJ" Devine
- Senior Principal Scientist
- Discovery and Investigative Safety/Preclinical Safety
- Novartis Institutes for Biomedical Research
- patrick.devine@novartis.com

Background

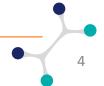

- Studying drug safety at Novartis (2010-current)
- Studied reproductive toxicology and safety as Professor, INRS-Institut Armand-Frappier (2003-2010)
- Studied reproductive toxicology as post-doc, U of Arizona (1999-2003)
- Studied toxicology at U of Maryland, Baltimore (1992-1999)

All stages involved both *in vivo* and *in vitro* safety studies, investigative toxicology

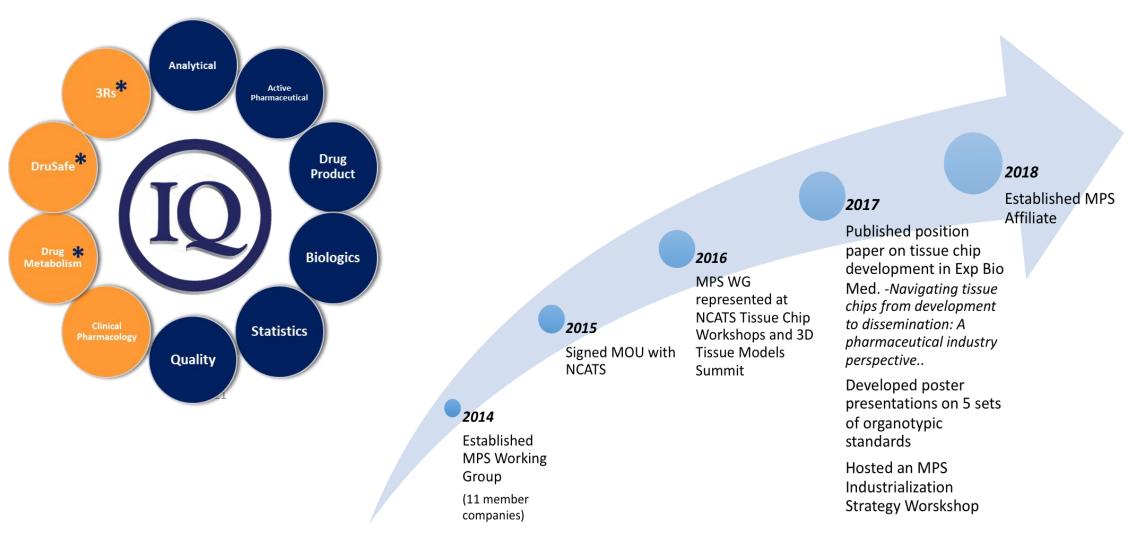
Definition of MPS from IQ MPS Affiliate

The IQ MPS affiliate defines MPS as going beyond traditional 2D culture models by including several of the following design aspects: a multicellular environment within biopolymer or tissue-derived matrix; a 3D structure; the inclusion of mechanical cues such as stretch or perfusion for breathing, gut peristalsis, flow; incorporating primary or stem cell derived cells; and/or inclusion of immune system components.

- Fabre et al. Lab Chip (2020) 20:1049-1057


- Adapted from Dash and Proctor (2019) Hepatic microphysiological systems: Current and future applications in drug discovery and development. In Micro and Nano Technologies, microfluidic Cell Culture Systems (2nd Ed) Elsevier, 2019.

IQ MPS Members and Overview


Current Membership

AbbVie	BMS	Merck	Takeda		
Alnylam	Eisai	Merck Healthcare KGaA	Theravance		
Amgen	Eli Lilly	Novartis	Vertex		
Astellas	Genentech	Pfizer			
AstraZeneca	GSK	Sanofi			
Biogen	Janssen	Seattle Genetics			

- Diverse representation from Drug Safety, Pharmacology, 3Rs, ADME, and PK/PD
- Leadership
 - Chair Jason Ekert (GlaxoSmithKline)
 - Vice Chair Szczepan Baran (Novartis)
 - Vice Chair-Elect Rhiannon Hardwick (Theravance)
 - Past Chair Terry Van Vleet (AbbVie)

IQ Microphysiological Systems Affiliate Evolution

IQ MPS Affiliate Aims

Serve as a thought leader for both MPS developers and stakeholder organizations in the industry implementation and qualification of MPS models.

Provide a venue for appropriate cross-pharma collaboration and data sharing to facilitate industry implementation and qualification of MPS models.

Create focused
engagement between
industry and regulatory
agencies on the current
status and evolving field of
MPS in an industry setting.

Develop external partnerships and collaborations to help enhance the inclusion of industry priorities.

Thought Leadership/Partnerships

Organotypic Standards

- 8 Manuscripts Series 1.0 complete (9th submitted) *Lab on a Chip (JIF 6.914)*
- 9 teams established for manuscript series 2.0 *Altex (JIF 6.183)*
- Summary presented at the PREDiCT: 3D
 Oncology & Tissue Models Summit

Public Presentations

- PREDICT: 3D Oncology & Tissue Models Summit
- 16th NCATS Tissue Chip Consortium Meeting
- NICEATM / NIEHS Town Hall Meeting on Development of New Approach Methodologies to Reduce Animal Use in Toxicity Testing
- World Pharma Week Drug Discovery & Preclinical Webinar Series

FDA - Dialogue & Collaboration

- Feb 26 Case Study Workshop and Webinar presentations (Aug 12 & Jan 29)
- Invited to comment on FDA definitions
- Presented at Oct 21 FDA Office of Clinical Pharmacology / IQ Consortium Scientific Exchange Meeting with the Translational ADME and Clinical Pharmacology Leadership Groups

NCATS - Continued Relationship

- Presented at Annual Tissue Chip Workshop
- Opportunity to contribute to MPS World Congress Planning

Organotypic Manuscripts

Evolved from "guidance" posters presented at NCATS Tissue Chip Consortium Meetings

Serve as a focal point for stakeholder engagements with vendors and regulators

Manuscripts address 3 overarching questions:

CNS/PNS

- 1. What are the challenges/gaps in current in vitro and in vivo models?
- 2. What data and capabilities would be needed to demonstrate a meaningful improvement over standard 2D systems?
- 3. What are the industry suggested endpoints, online readouts, test compounds, etc. for "MPS qualification" studies?

	Drafting		Submitted		Published		
•	CNS/BBB • MPS for OLIGOS IMMUNE • MPS for GENE EDITING OCULAR • MPS for CELL THERAPIES REPRO • DISEASE MODELS		CARDIOVASCULAR	•	INTRO LUNG SKIN LIVER	•	ADME BIOLOGICS KIDNEY GI

https://www.iqmps.org/publications

Cross-Pharma Collaboration And Data Sharing

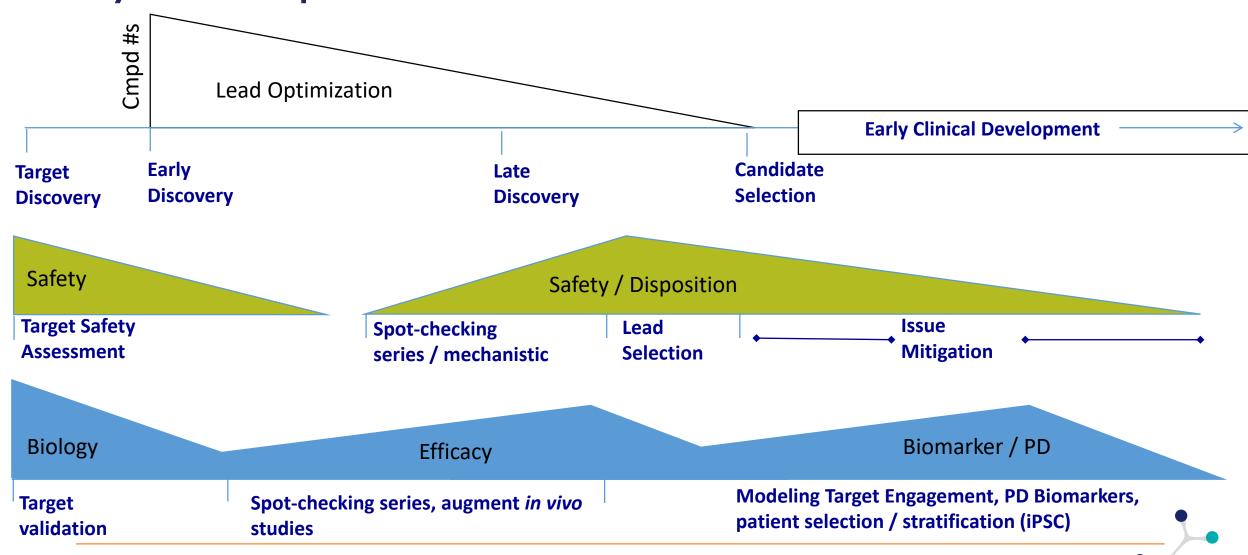
GI RFI¹

- Goal: evaluate available GI MPS
- Released RFI for GI MPS
- 11 responses received from 8 organizations

Organ/COU²-Specific Discussion Groups

- Goal: coordinate cross-pharma sharing of MPS data and collaborations
- Formed 10 organ specific discussion groups to explore collaboration opportunities outside of the IQ MPS

Kidney RFI


- Goal: evaluate available kidney MPS
- RFI for Kidney MPS being prepared

Landscape / Gap Analysis Survey

- Goal: characterize MPS use and gaps in Pharma
- Redesigned Survey (version 2.0) and incorporated FDA feedback
- Collecting responses through mid-Jan

¹Request for information; ²Context of Use

Positions in Drug Discovery/Development for MPS Entry and Impact

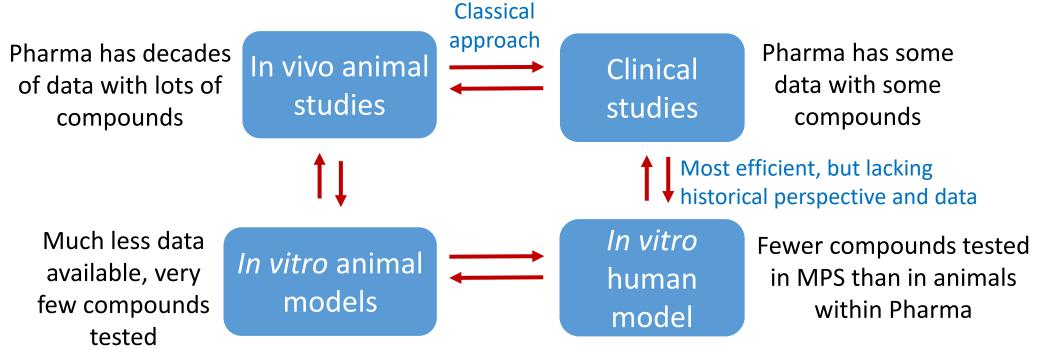
IQ MPS statement on animal MPS (1/3)

- The IQ MPS Affiliate recognizes the importance, impact, and the need for animal models as well as the opportunity for new approach methodologies to enhance/reimagine drug discovery and development (DDD).
- The exclusive utilization of human cell-based systems however would make it challenging to:
 - support the investigation of species-specific mechanisms
 - demonstrate that a model recapitulates histopathological findings
 - validate predictivity for toxicities that only occur above feasible clinical exposures in humans
- Therefore, MPS composed of cells from animal species are also important to the advancement of MPS development and use.

IQ MPS statement on animal MPS (2/3)

The IQ MPS Affiliate supports the development and utilization of animal cell based MPS in addition to human cell based MPS in order to:

- cross-reference animal cell based MPS data with in vivo animal data to accelerate the development and validation of novel MPS technologies and applications
- leverage animal in vivo data with animal MPS data to gain confidence in predictivity of human MPS
- Identify species-specific differences for selection of translational models through MPS species comparisons, especially for rare diseases
- develop transgenic and disease-specific MPS models with cells derived from transgenic mice/rats
- carry out structure-activity relationship (SAR) and mechanistic studies in instances where there are nonclinical toxicological issues that need resolution, e.g. nephrotoxicity, CNS toxicity
- compare ADME in nonclinical species and human

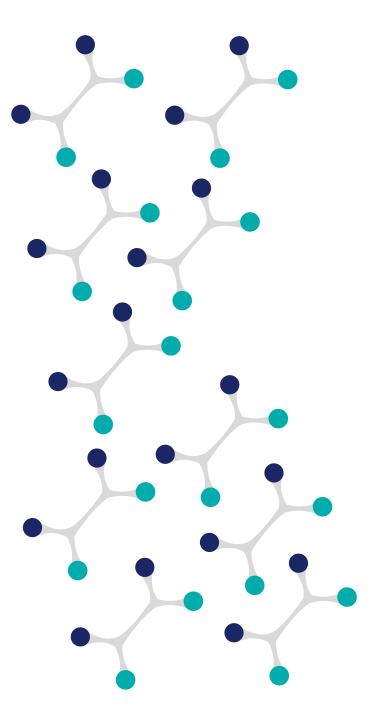

IQ MPS statement on animal MPS (3/3)

 The IQ MPS Affiliate supports the 3Rs (Refinement, Reduction and Replacement) concept described by Russell and Rex Burch in The Principles of Humane Experimental Technique (Russell & Burch, 1959). The current use of MPS has already a direct impact on the Refinement and Reduction in Drug Discovery and Development, with a long-term goal of animal Replacement in the future.

From statements to ... My thoughts: Why Pharma needs animal MPS

Translating preclinical models to the clinic and reverse translation from clinic

- We don't always have models we need, and we don't always know what models we need
- We don't always know how well in vitro models predict humans



My further thoughts and predictions

- Critical needs for animal MPS (even though we are developing drugs for humans)
 - Animal MPS needed for Pharma over the next few decades (at least)
 - Consistent cell sources from various tissues from various species (diverse sources)
 - Experience/expertise in rapidly establishing new robust MPS of multiple species
 - Comparison of human and animal MPS and in vivo data translatability
- Where animal models may still be needed further in the future:
 - Final confirmation of efficacy or safety before going into humans
 - Carcinogenicity studies
 - Fertility, embryofetal development, reproductive safety
 - Understanding clinical issues of unknown mechanism

Acknowledgements

- IQ MPS Affiliate participants
- IQ MPS secretariat
 - Ann Marie Stanley
 - Jillian Brady
 - Catherine Graveline
 - Reed Abrahamson
- Szczepan Baran (Novartis)
- Francois Pognan (Novartis)

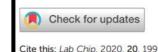
THANK YOU

Organotypic Manuscript Series

Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective

Garrett R. Ainslie, **D*** Myrtle Davis, ** Lorna Ewart, ** Linda A. Lieberman, **d David J. Rowlands, Andrew J. Thorley, Gorm Yoder and Anne M. Ryang

Cite this: Lab Chip. 2020. 20. 697


Application of microphysiological systems in biopharmaceutical research and development

Norman C. Peterson, ** Prathap Kumar Mahalingaiah, ** Aaron Fullerton^c and Matteo Di Piazza^d

Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry

Andreas R. Baudy, **D*** Monicah A. Otieno, **D Philip Hewitt, **Jinping Gan, **D** Adrian Roth, e Douglas Keller, fr Radhakrishna Sura, g Terry R. Van Vleet⁹ and William R. Proctor^h

Drug-induced skin toxicity: gaps in preclinical testing cascade as opportunities for complex in vitro models and assays

Rhiannon N. Hardwick, **D*** Catherine J. Betts, ** Jessica Whritenour, **Catherine J. Betts, **D*** Tessica Whritenour, **D*** Tessica Radhakrishna Sura, d Maike Thamsen, e Elad H. Kaufman and Kristin Fabre to

Cite this: Lab Chip, 2020, 20, 468

A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies

Jonathan A. Phillips, Da Taraka Sai Pavan Grandhi, Myrtle Davis, C Jean-Charles Gautier, d Niresh Hariparsad, Douglas Keller, De Radhakrishna Suraf and Terry R. Van Vleet*f

Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization

Stephen Fowler, David B. Duignan, Anshul Gupta, David B. Duignan, Anshul Gupta, David B. Duignan, Stephen Fowler, David B. Duignan, Anshul Gupta, David B. Duignan, Canada Gupta, Canada Niresh Hariparsad, d Jane R. Kenny, W. George Lai, Jennifer Liras, Dg Jonathan A. Phillips (10)h and Jinping Gan (10)*

Developing in vitro assays to transform gastrointestinal safety assessment: potential for Cite this: Lab Chip, 2020, 20, 1177 microphysiological systems†

> Matthew F. Peters, 0 *a Allison L. Choy, Carmen Pin, Derek J. Leishman, Derek J. Leishman, Annie Moisan, Eborna Ewart, the Peggy J. Guzzie-Peck, Radhakrishna Sura, Annie Moisan, Annie Moisan, Annie Moisan, Annie Moisan, Annie Moisan, Annie Moisan, Radhakrishna Sura, Radhakri Douglas A. Keller, D h Clay W Scott and Kyle L. Kolaja