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Why do we need new model systems? Emerging viruses
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Emulate lung-on-chip (LoC) system Top view

Cross-sectional view
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Mlcrovasculature damage Is a cllmcal hallmark of SARS-CoV-2
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SARS-CoV-2 in the alveolar space

How does SARS-CoV-2 infection alter alveolar physiology?

Why does severe disease manifest in the alveolar space
despite low ACE2 levels?
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LoC model for SARS-CoV-2
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Low ACE2 expression, infection increases TMPRSS2 expression
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Low ACE2: examples of productive
infection in alveolar epithelial cells
are rare

High NRP1 might represent an
alternative entry route
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SARS-CoV-2 persists in individual epithelial and endothelial cells
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Transient hyperplasia and
loss of tight junctions
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Endothelial inflammation generates a pro-coagulatory environment
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Infection of endothelial cell monocultures does not lead to
Inflammation

Endothelial monoculture infection - 2dpi, 1E4 PFU
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NF-KB inflammatory responses are cell-type specific

days post infection - with m¢
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Tocilizumab does not alleviate endothelial cell dysfunction
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Tocilizumab — anti IL6R antibody being tested in
clinical trials as a repurposed therapeutic

Administration slows down the loss of barrier
function but does not prevent formation of cell
clusters

E P :: L 19.01.2021 14



Conclusions

1. Replication kinetics — SARS-CoV-2 does not replicate productively in the alveolar space, yet low levels of
virions can persist and replicate in individual cells for up to 3 days.

2. Physiology — Rapid basolateral transmission despite low ACEZ2 expression. Transient hyperplasic
phenotype. None of these changes occur in monoculture experiments where endothelial cells are
inoculated with the virus apically.

3. Persistent nature of inflammation — an NF-KB inflammatory response typified by IL-6 secretion and a
weak antiviral interferon response is transient in epithelial cells but persistent in endothelial cells.

4. Endothelial cells as a source for IL-6 — IL-6 secretion is independent of the presence or absence of
resident immune cells, which shows that the damaged endothelium itself represents a source for this
cytokine.

5. Anti-IL6R therapy does not prevent inflammation — Administration of Tocilizumab slows the loss of

barrier integrity but does not reduce the occurrence of hyperplasia, which indicates that not all inflammation
observed is IL-6 signalling dependent.
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Tuberculosis: an extensive series of host-pathogen interactions

Current paradigm: Intracellular life-cycle of M. tuberculosis

Infection of
individual

Expansion
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replication

Significance: Global (1.3 million deaths/year),
long and expensive antibiotic treatment,
BCG vaccine is ineffective in adults

Known Unknowns in Human Patients
Why do only 5-10% of people develop active
disease?

What determines entry into and exit from
latency?

Mouse Model
Permissive

No latency

No granulomas

Cynomolgus macaques
Closest to human
Expensive to work with

‘First contact’ with the host is extremely difficult to study in any animal model
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In vitro passaging alters surfactant expression in ATs
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|, Il. Striking observations: role for surfactant and MTB cords
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Single-cell growth dynamics in ATs vs. macrophages
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Biophysical role: Cords as “battering rams” to aid pathogenesis?

Colony shape impacts
ability to deform its
surroundings
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