

Analysis of Approaches for Supplemental Treatment of Low-Activity Waste at the Hanford Nuclear Reservation

Delmar Noyes, Assistant Manager
U.S. Department of Energy, Office of River Protection

December 12-13, 2017

Presented by:

Our Mission

To safeguard the nuclear waste stored in Hanford's 177 underground tanks, and to manage the waste safely and responsibly until it can be treated in the Waste Treatment and Immobilization Plant for final disposition.

Vision

To be a high-performing, innovative organization that is safety-conscious and employee-focused, and committed to achieving our mission with environmental and fiscal responsibility.

Office of River Protection (ORP)

ORP is responsible for planning, integrating, and managing the River Protection Program executed by contractors performing work under ORP management. ORP has ~225 employees, both federal and contractor.

Washington River Protection Solutions (WRPS)

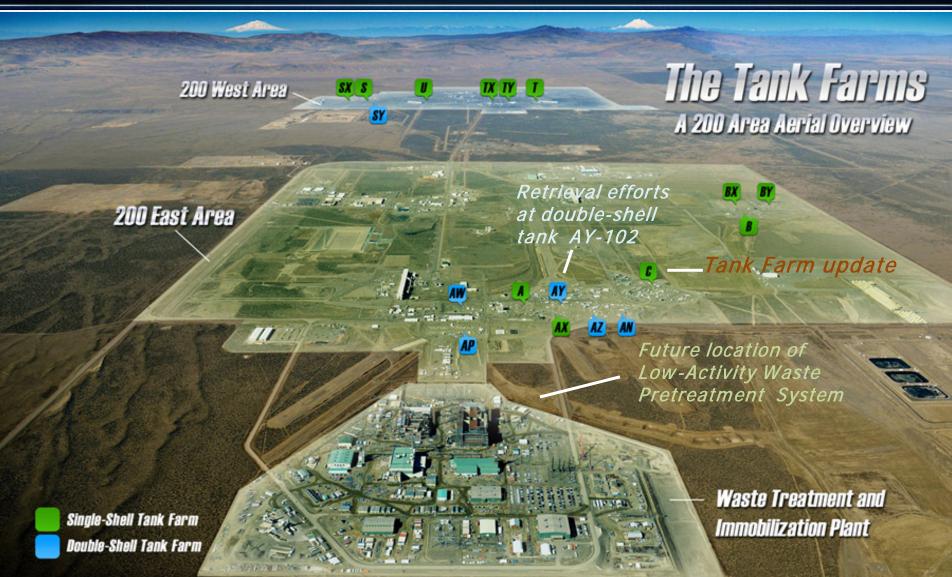
WRPS is the prime contractor responsible for safely managing and operating the Tank Farms. WRPS has 2,094 employees*.

Bechtel National, Inc. (BNI)

BNI is responsible for the engineering, construction, startup and commissioning of the Waste Treatment and Immobilization Plant. BNI has 3,044 employees*.

Wastren Advantage, Inc. (WAI)

WAI is the prime contractor responsible for managing the 222-S Laboratory. WAI has 56 employees.*


^{*}As of September 30, 2016

River Protection Project

Safely maintain 56 million gallons of radioactive and chemical waste

Federally Funded Research and Development Center Task Overview

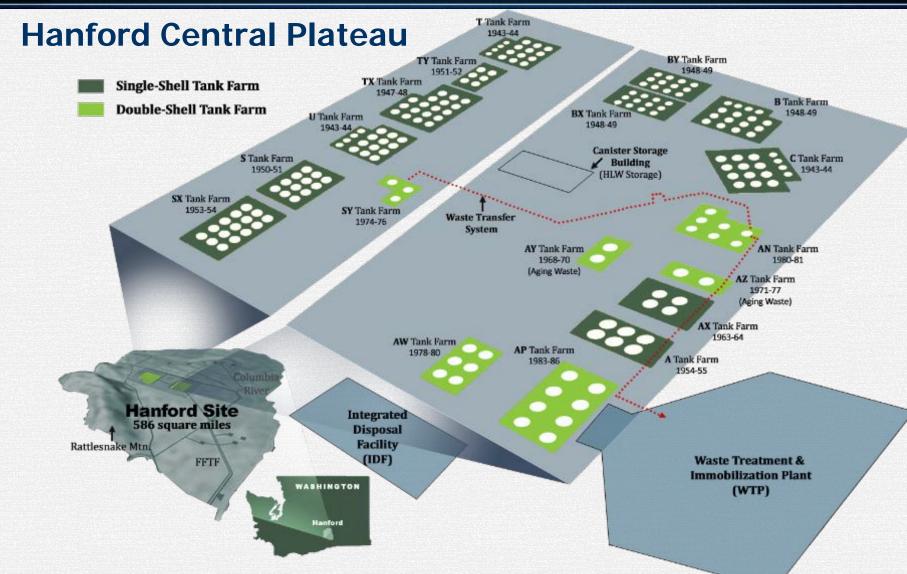
> Analyze Treatment Approaches

- Further removal of long lived constituents
- Vitrification, grouting, steam reforming and other identified alternatives

Further Analysis

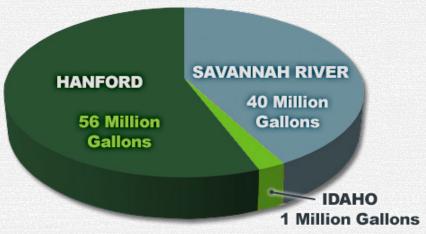
- Risks of approaches
- Benefits and costs of approaches
- Anticipated schedules of approaches
- Regulatory compliance of approaches
- Obstacles to approaches

National Academies of Science, Engineering and Medicine Task Overview


- Review of FFRDC Analysis: Conducted concurrent and parallel to FFRDC analysis
- Public Review: Provide an opportunity for public comment with sufficient notice to inform and improve the review quality
- > FFRDC and NASEM will provide to the state of Washington:
 - Analysis and review in draft form
 - At least 60 days to review and comment
- Submission to Congress: Every 180 days DOE will provide a progress briefing to the Congressional defense committees on both the analysis and review
- Completed Analysis and Review: DOE will submit to the Congressional defense committees the completed analysis, review and any comments from the state of Washington

- Beneficiary of the analysis and review
- Established multi-year funding
- Facilitates exchange of information
- Coordinates field visits: First on-site team meeting was May 23-24

Tank Mission Background



Hanford's Tank Farms Compared to Other Sites

Hanford Tank Farms

- 177 underground carbon steel storage tanks
 - 149 single-shell tanks
 - 28 double-shell tanks
 - 56 million gallons of radioactive and chemical waste
- 176 million curies of radioactivity
 - 106 million curies of previously removed strontium and cesium – stored in capsules
- 240,000 tons of complex chemical waste
- Five major facilities were used for Hanford waste generation

Total number of gallons contained within tanks at various DOE sites

Office of River Protection Mission

To safeguard the nuclear waste stored in Hanford's 177 underground tanks, and to manage the waste safely and responsibly until it can be treated in the Waste Treatment and Immobilization Plant for final disposition.

Saltcake 23M gallons

Mostly water-soluble salts; small amount of interstitial liquid

Supernate 21M gallons

Any non-interstitial liquid in the tanks – similar to saltcake in composition

Sludge 12M gallons

Water-insoluble metal oxides, significant amount of interstitial liquid – texture similar to peanut butter

Origin of the Waste

- Hanford tank waste was generated from chemical processing of irradiated uranium metal fuel rods to recover plutonium for defense and uranium for recycle
- > Five major processes were employed that generated the waste
 - Bismuth Phosphate precipitation (T & B Plants)
 - Redox solvent extraction (S Plant)
 - Uranium Recovery (U Plant)
 - PUREX (A Plant)
 - Isotope Separation and Recovery (B Plant)

From Storage to Making Glass – Providing Feed to WTP


Mast of the MARS-V installed at tank C-105

High-level waste canister (tall) and low-activity waste container

Vitrification and Storage

Molten glass and waste in a melter

Simulated vitrified waste

High-level waste (tall) and low-activity waste containers

Simulated vitrified waste in a container

Tank Farms – Complex, Accessible Only from the Surface

Mobile Arm Retrieval System

mast can reach everywhere within tank

Articulated arm on vertical

Effective & efficient

Enhanced Reach Sluicing

- Telescoping arm brings sluicer closer to waste vs. traditional sluicing methods
- Successfully broke through hardpan-like top layer to expose sludge below

Caustic Dissolution

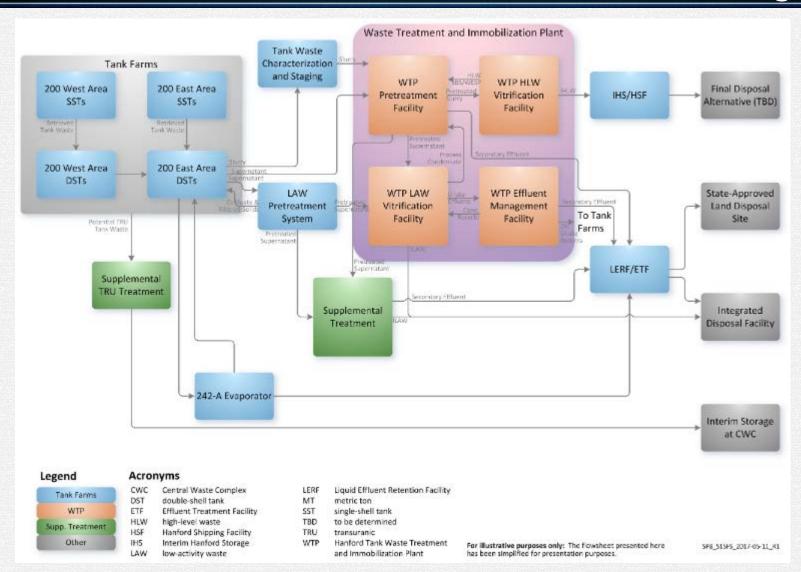
- Gained state approval to presoak hard-heel waste
- Process improvement speeds retrieval schedule, improves efficiency

Tank Farms Supporting Facilities

Effluent Treatment Facility

242-A Evaporator

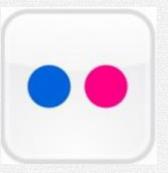
222-S Laboratory


Waste Treatment and Immobilization Plant (WTP)

Current System Plan Arrangement

Connect with us!

News, photos, videos, and more ...


facebook.com/riverprotection

youtube.com/user/RiverProtection

twitter.com/riverprotection

flickr.com/riverprotection