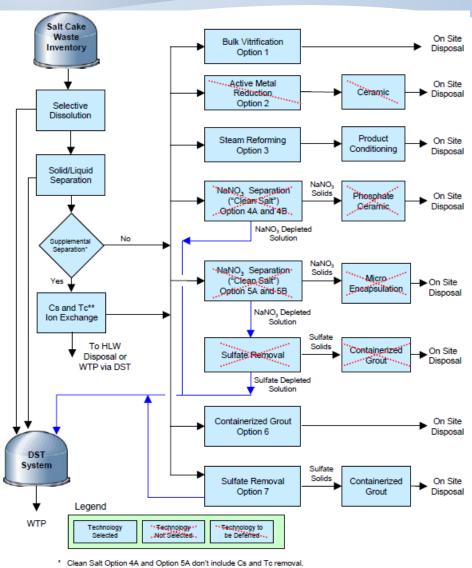


History of Supplemental LAW Treatment Reviews

David Swanberg February 2018

Decision to Treat Tank Waste


- DOE's Preferred Alternative in the TWRS EIS ROD (1997)
 - o "Phased Implementation" for treatment of Tank Waste
 - Phase I was a planned 10 year Demonstration Phase
 - o Phase II was an estimated 30 year full scale production phase
 - Phase II presumed to be LAW Vitrification but would consider other immobilization technologies provided the final waste forms would meet regulatory requirements
 - DOE committed to continue technology development to reduce uncertainties and evaluate emerging technologies
 - DOE also committed to use technology development and lessons learned from Phase I to improve efficiencies and reduce costs for Phase II

Mission Acceleration Initiative

Mission Acceleration Initiative

- Began in May 2002 with objective of evaluating technologies that could supplement the WTP planned throughput
- Goal of reducing RPP mission duration by 20 years or more
- Assessed two dozen candidate technologies
- Down-selected to four technologies for further evaluation

^{**} To Ion Exchange added as a result of May 21-23 Workshop

- Technologies selected for further evaluation
 - Bulk Vitrification
 - Steam Reforming
 - Containerized Grout (Cast Stone)
 - Sulfate Removal
- Evaluation documented in RPP-11261, Recommendation for Supplemental Technologies for Potential Mission Acceleration, July 2002.
- Testing of technologies was recommended up to and including pilot scale tests with simulants and bench scale tests with real waste
- Selections further refined in RPP-17963, Initial Selection of Supplemental Treatment Technologies for Hanford's Low-Activity Tank Waste, February 2004.

Waste Form Testing to Support MAI

Bulk Vitrification

- o Extensive design and testing up to a full scale demonstration system
 - > RPP-30570, Technical Assessment of Bulk Vitrification Process & Product for Tank Waste Treatment at the Department of Energy Hanford Site, July 2006.
 - ➤ RPP-31314, A Comprehensive Technical Review of the Demonstration Bulk Vitrification System, September 28, 2006
 - ➤ CH2M-36501-FP, Design of the Demonstration Bulk Vitrification System for the Supplemental Treatment of Low Activity Tank Waste at Hanford, February 2008.
 - ➤ PNNL-15193, Bulk Vitrification Castable Refractory Block Protection Study, May, 2005.
 - ➤ PNNL-14985, Feed Variability and Bulk Vitrification Glass Performance Assessment, January 2005.
 - ➤ PNNL-16267, Investigation of Tc Migration Mechanism During Bulk Vitrification Process Using Re Surrogate, December 2006.
 - ➤ PNNL-15868, Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B, June 2006
 - ➤ PNNL-16773, Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration, July 2007.

Waste Form Testing to Support MAI

Steam Reforming

- Bench scale and engineering scale testing with simulants
 - ➤ WSRC-TR-2002-00317, Engineering Study of the Hanford Low Activity Waste Steam Reforming Process, July 2002.
 - ➤ PNWD-3288, Initial Evaluation of Steam-Reformed Low Activity Waste for Direct Land Disposal, 2003.
 - ➤ WSRC-TR-2005-00102 Durability Testing of Fluidized Bed Steam Reformer (FBSR) Waste Forms for High Sodium Wastes at Hanford and Idaho, 2005.
 - ➤ INEEL/EXT-04-02492, Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology, November 2004

Containerized Cast Stone

- Bench scale testing with simulants and real waste
 - ➤ RPP-RPT-26742, Hanford Containerized Cast Stone Facility Task 1 Process Testing and Development Final Test Report
- Related work
 - > RPP-RPT-26851, Effluent Treatment Facility Waste Stream Stabilization Testing, August 2005.
 - > RPP-RPT-31077, Effluent Treatment Facility Waste Stream Monolith Testing Phase II, Sept 2006.

System Planning Review

External Technical Review of System Planning for Low Activity Waste Treatment at Hanford – November 2008

o Review scope

- > Review system plans for Alternative Supplemental Treatment of Hanford LAW
- > Review the path forward for LAW disposition, including early LAW and Bulk Vit
- > Evaluation of the issues and benefits of potential installation of a third LAW melter

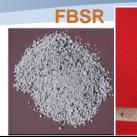
Range of Alternatives Evaluated

- ➤ Nine alternatives evaluated including 2nd LAW Vitrification and Bulk Vitrification
- ➤ Life Cycle costs compared
- ➤ No non-glass waste forms/immobilization processes evaluated
- A range of processing and programmatic uncertainties were evaluated

Recommendations

- ➤ High priority for completing WTP construction and implementing a sodium management strategy the latter drives mission duration and need for LAW treatment capacity
- Further Testing of Bulk Vitrification is low priority

Kosson, D.S., et. al., External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford, November 2008


Enhanced Tank Waste Strategy – 2011

- Evaluate alternative waste forms and processes for Supplemental LAW treatment.
- Include any new data or technology development results since prior evaluations
- Determine whether waste form performance can meet IDF PA performance objectives
- Develop a regulatory compliance strategy and path forward
- Conduct fair and balanced cost comparison
- Generate data for TPA milestones M-62-40ZZ, One-time Report and M-62-45 Supplemental Treatment Technology Selection

Data for Evaluation

- FBSR Demonstration FY10 12
 - Included bench scale demonstration w/ real waste
 - Waste form performance would easily meet IDF performance objectives
- Low Temperature Waste Form Cast
 Stone FY13 16
 - Formulation screening matrix
 - Formulation enhancements incl. Tc & I getters
 - Leach Tests show 10 -100X decrease in Tc release rate (EPA-1315)
 - Meet or exceed IDF PA performance objectives

	Cast Stone Formulation Screening Matrix Fly Ash Source/Blast Furnace Slag Source (Northwest or Southeast USA)							
Waste Composition	NW/NW	NW/SE	SE/NW	SE/SE	NW/NW	NW/SE	SE/NW	SE/SE
Average 5M	35	20						13 2
High SO₄ 5M			1		10	31		
High Al 5M	28	4			24	37		17
SST Blend 5M			8		32	12		
Average 7.8M	5	29	6		27 36	3 22		
High SO ₄ 7.8M	15 25	33 38		14 7			26 21	
High Al 7.8M			19		30	9	11	
SST Blend 7.8M	16	34		18			23	
Mix Ratio (w/dm)	0.4	0.4	0.4	0.4	0.6	0.6	0.6	0.6

Original Mix No.

Additional Mix No

Test Combination

Replicate

Path Forward Opportunities

- Recent development activities have shown significant improvements in performance of grout waste forms
 - Improved formulations and additives (e.g. getters)
- Goal to produce a safe and compliant waste form
- Analyses are needed to demonstrate the waste form will meet acceptance criteria for disposal
 - Meet IDF performance objectives
 - Protective of human health and the environment