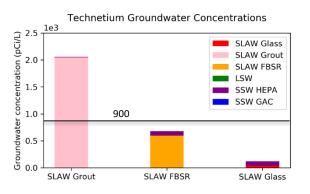
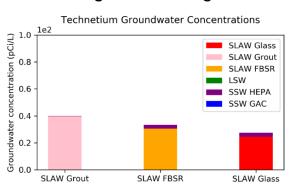

Backup Slides

SRNL-MS-2019-00095

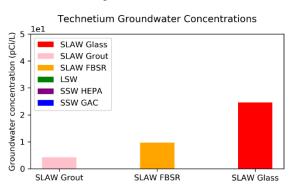
IDF



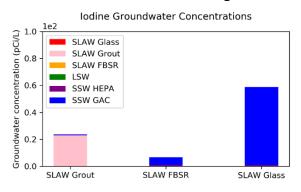
SRNL-MS-2019-00095


Projected Peak Groundwater Concentrations for All Cases

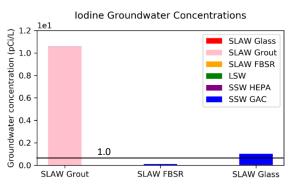
Tc-99


Low Performing

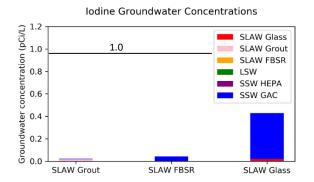
High Performing

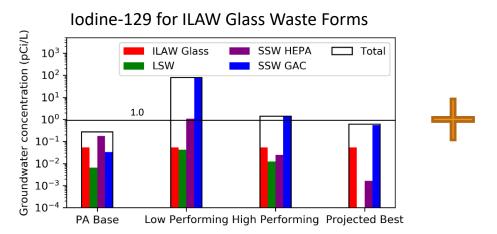


Projected Best

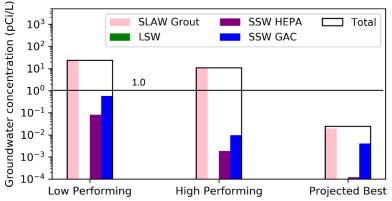


I-129

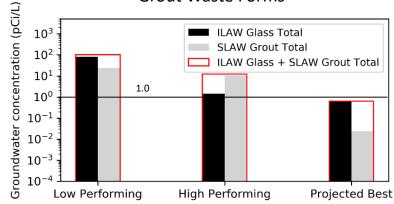

Low Performing


High Performing

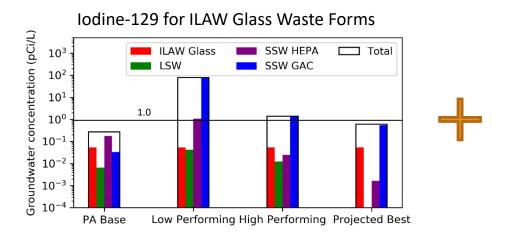
Projected Best



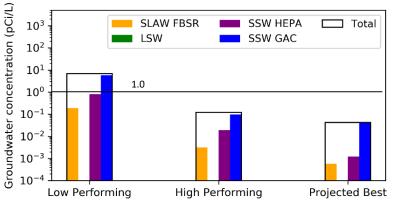
Performance Evaluation Results – Cumulative Groundwater Impacts for ILAW + SLAW


- The total potential impact to groundwater of disposal of immobilized LAW must include both the ILAW fraction produced by LAW Vit at WTP and the immobilized SLAW fraction.
- Shown here is cumulative impact for ILAW glass plus SLAW grout waste form systems only

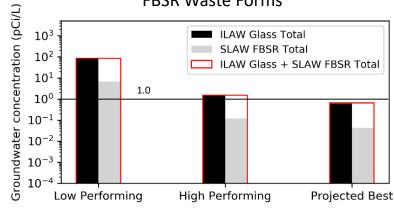
Iodine-129 for SLAW Grout Waste Forms



Iodine-129 for ILAW Glass + SLAW Grout Waste Forms


Performance Evaluation Results – Cumulative Groundwater Impacts for ILAW + SLAW

SRNL-MS-2019-00095


- The total potential impact to groundwater of disposal of immobilized LAW must include both the ILAW fraction produced by LAW Vit at WTP and the immobilized SLAW fraction.
- Shown here is cumulative impact for ILAW glass plus SLAW FBSR waste form systems only

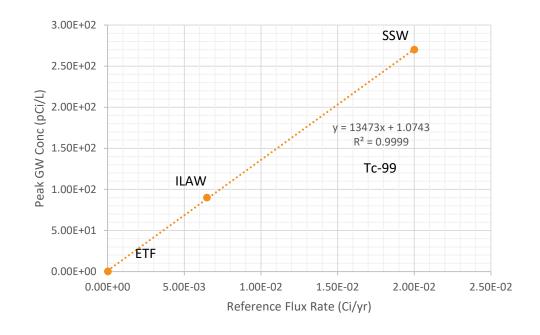
Iodine-129 for II AW Glass + SI AW **FBSR Waste Forms**

Waste Form Volumes and Number of Containers

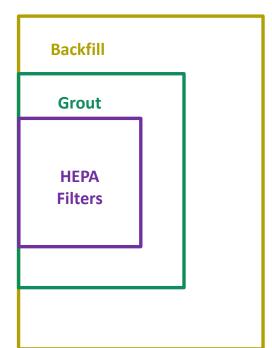
	Vitrification (ILAW+SLAW Glass)		Grout (ILAW Glass+SLAW Grout)		Steam Reforming (ILAW Glass+SLAW FBSR)	
Waste Forms	Volume (m3)	Number of Containers	Volume (m3)	Number of Containers	Volume (m3)	Number of Containers
Primary ILAW (glass)	123,013	56,688	123,013	56,688	123,013	56,688
LSW - ETF	5,004	24,055	5,004	24,055	5,004	24,055
SSW - HEPA filters	81	389	81	389	81	389
SSW - GAC absorber	730	3,510	730	3,510	730	3,510
Primary LAW SSW+LSW total	5,814	27,954	5,814	27,954	5,814	27,954
Immobilized SLAW	93,490	43,083	367,902	44,326	245,268	29,550
LSW - ETF	3,803	18,282	-	-	-	-
SSW - HEPA filters	61	295	6	30	61	295
SSW - GAC absorber	555	2,668	55	266.79	555	2,668
SLAW SSW+LSW total	4,419	21,245	62	296	616	2,963
Primary ILAW + SLAW Total	216,502	99,771	490,915	101,013	368,281	86,238
Primary+SLAW Sec. Waste Total	10,233	49,199	5,876	28,251	6,431	30,917
All	226,735	148,970	496,791	129,264	374,711	117,156

Long-Term Grout Degradation

Hanford 2017 IDF PA (pg. 4-14)


- With time, the waste form is expected to physically degrade, which affects the diffusive and hydraulic characteristics of the waste form, which may allow for dominantly advective transport of COPC through the degraded waste form. Aging of the waste form has been correlated with the amount of water that interacts with the waste form. The assessment of potential degradation mechanisms, described in SRNL-STI-2016-00175, Section 10, indicates that SSW grout degradation from chemical attack can be expected to be minimal under IDF disposal conditions due to the limited amount of recharge pore volumes that are expected to be exchanged within the waste form.
- Although physical degradation of the waste form due to deformation cracking may be significant, the adverse
 effect of cracks is expected to be minimal with respect to moisture and solute transport due to the low
 saturation in the surrounding backfill material.

Estimating Peak Groundwater Concentrations


- Linear relationship identified between flux rate exiting facility and peak concentration (to be published (RPP-CALC-63176, unpublished¹)
- Based on physics-based simulations of vadose zone flow and transport to groundwater

Reference Flux Rate¹ = [Corrosion Rate (Ci/yr)] • Inventory

Peak GW Conc = (Flux Rate/Reference Flux Rate¹) • Peak GW Conc¹

Encapsulated Waste Form Conceptual Model – SSW HEPA

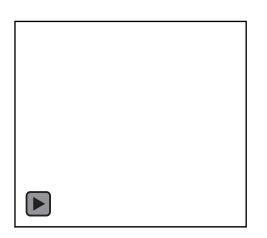
D = 5.0 x 10⁻⁶ (cm²/s)

$$\tau$$
 = 0.0058
D_{eff} = 2.9 x 10⁻⁸ (cm²/s) • θ s

D = 5 x 10⁻⁶ (cm²/s)

$$\tau$$
 = 0.0058
 \underline{D}_{eff} = 2.9 x 10⁻⁸ (cm²/s) • θ s

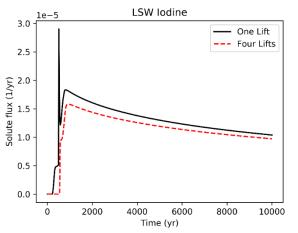
D = 5 x 10⁻⁶ (cm²/s)

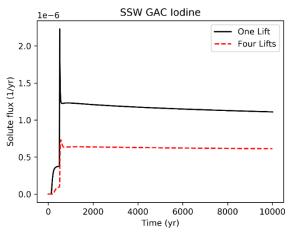

$$\tau$$
 = 1
D_{eff} = 5 x 10⁻⁶ (cm²/s) • θ s

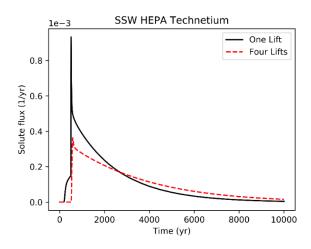
$D_{eff} = D\tau \Theta S$

 D_{eff} = effective diffusion coefficient (cm²/s) D = free water diffusion coefficient (cm²/s) θ = diffusive porosity τ = aqueous phase tortuosity s = aqueous liquid saturation

Performance Evaluation in Progress – Approach and Status (continued)


- Simulating full stack of SSW, LSW, and SLAW containers within the IDF
 - ILAW Glass already modeled for full height (four lifts) of IDF
 - Primary difference associated with LSW and SSW - factor of ~1.2 to 3X lower peak flux




2 Containers Represented in IDF PA

8 Containers Represented in NDAA Analysis

