National Center for Disaster Preparedness EARTH INSTITUTE | COLUMBIA UNIVERSITY

Katrina, Sandy, and Deepwater Horizon: Lessons Thrice-Learned

Session 3: Lessons Learned from Setting up Population Monitoring Registries

Jonathan Sury, MPH CPH 3/12/19

Approach

- Post-disaster Cohorts (3x)
 - What we did
 - What we learned
 - What we would do differently
- Perspective from a small academic research shop who has worked with multiple collaborators and other academic institutions
- Personal perspective of a regular staff (ie not a Principal Investigator)

Cohorts Overview

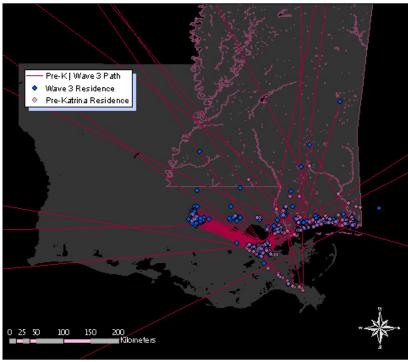
- 1. Gulf Coast Child & Family Health Study (G-CAFH)
 - Observational Cohort Post-Katrina 5 waves completed*
 - Event: August 2005
 - Baseline: February 2006 (LA) & August 2006 (MS)
- 2. Sandy Child & Family Health Study (S-CAFH)
 - Observational Cohort Post-Superstorm Sandy 2 waves completed
 - Event: October 2012
 - Baseline: August 2014 May 2015
- 3. Gulf Coast Population Impact (GCPI) / Resilient Children Youth & Communities Project (RCYC)
 - Cross-sectional Survey → Cohort Study 3 waves completed
 - Event: April 2010
 - Baseline: April October 2012

General Study Objectives: All three cohorts

- Create representative (either population or highly exposed) population-based cohorts to follow over time
- Examine how direct or indirect exposure may affect the physical and mental health of a household, particularly those with children (based on the socio-ecological model of recovery)
- Explore the event itself from the perspective of the individual or household

G-CAFH

Post-Katrina Cohort Study


G-CAFH: Sampling Methodology

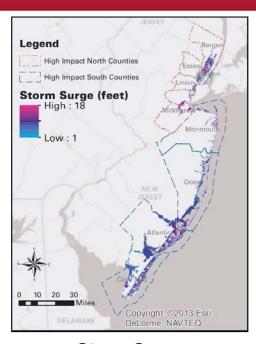
- Multi-stage cluster sampling (by size, type, state)
 - Louisiana: random selection of congregate settings by type and number of residential units (FEMA trailer parks, FEMA trailers in commercial parks, hotels)
 - Mississippi: random selection of congregate settings (FEMA trailer parks, FEMA trailers in commercial parks), FEMA-designated census blocks (moderately to extensively damaged)
- 1,079 households in Louisiana and Mississippi recruited within one year of Hurricane Katrina
- Sample representative of 60,000 to 100,000 displaced and/or heavily-impacted Katrina survivors
- Face-to-face interviews

G-CAFH: Baseline and Diaspora

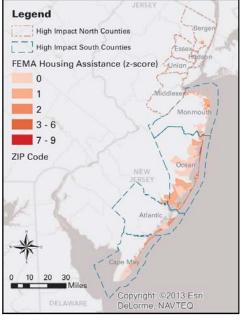
G-CAFH: Retention

	Total
Baseline (6-12 months post-Katrina, ~1 yr)	1,079
Wave 2 (20-23 months post-Katrina, ~2 yrs) Retention Rate	803 <i>75.2%</i>
Wave 3 (33-38 months post-Katrina, ~3 yrs) Retention Rate	777 75.3%
Wave 4 (51-58 months post-Katrina, ~4-5 yrs) Retention Rate	844 87.6%
Wave 5 (122 – 156 months post-Katrina, 10+ yrs) Retention Rate	646 <i>81.0%</i>

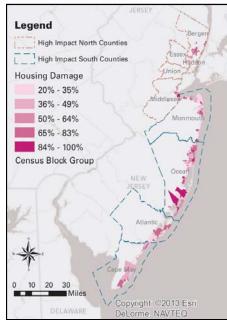
S-CAFH


Post-Superstorm Sandy Cohort Study

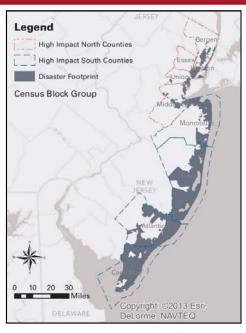
S-CAFH: Objectives


- A random multi-stage cluster sample of 1,000 residents living in or near the coastal areas of New Jersey most directly exposed to the storm.
- Assess the health and well-being of affected population and socio-economic impact on households on the nine most affected counties in the state based on FEMA MOTF Impact Analysis
- This cohort is statistically representative of the 1 million New Jersey residents who were living in those geographic areas of the state most exposed to the storm, the Disaster Footprint

S-CAFH: Impact Areas



Storm Surge ≥ 1 foot


FEMA Housing Assistance Claims Zip Codes ≥ mean

National Center for Disaster Preparedness

Housing Damage
Census Block Groups
with > 20% assessed
units sustaining damage

S-CAFH: Disaster Footprint & Sample

Representative of:

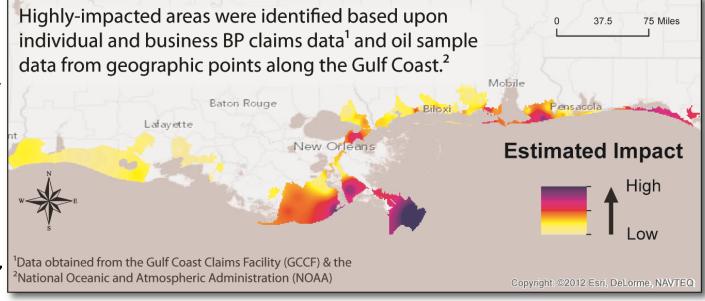
Population: 1,047,000

• Households: 411,000

- Overlaid three geographical layers (Storm surge, housing assistance claims, housing damage)
- Census block groups that satisfied ANY of the three criteria were extracted and merged to create the final Disaster Footprint
- Stratified sample to include oversample of high damage and high poverty
 - Using NJ taxlot data a random sample was drawn for recruitment

S-CAFH: Sampling Frame

	Disaster Footprint								
Total # block groups	832								
Sampled # block groups	52								
GEOGRAPHY	North			South					
Total # block groups	262 (31%)				570 (69%)				
Sampled # block groups	18 (35%)				34 (65%)				
DAMAGE	High		Low		High		Low		
Total # block groups	3		259		76		494		
Sampled # block groups	3		15		24		10		
POVERTY	High	Low	High	Low	High	Low	High	Low	
Total # block groups	1	2	99	160	16	60	133	361	
Sampled # block groups	1	2	12	3	13	11	7	3	
SAMPLED HOUSEHOLDS	50	100	300	75	325	275	175	75	
COMPLETED HOUSEHOLDS AS OF APRIL 15, 2015	58	97	117	52	254	179	152	74	

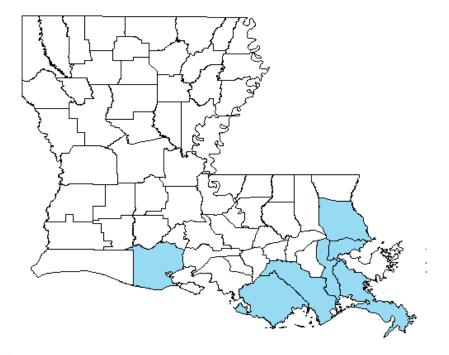

GCPI/RCYC

Post-Deepwater Horizon Oil Spill Cohort

GCPI/RCYC: Sampling Methodology

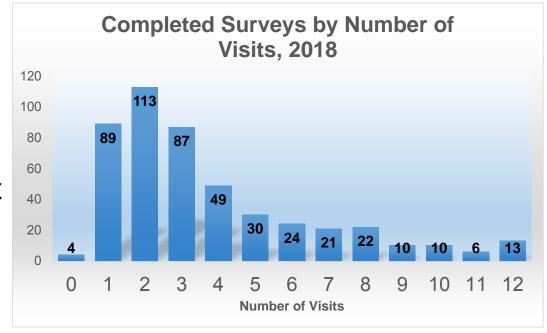
- Use of secondary data - NOAA Oil data (SCAT) and BP Claims (IA/BA) to identify hardest hit regions
- Household survey – knocked on 6,800 doors, interviewed 1,437 parents (LA, MS,

LOUISIANA STATE UNIVERSITY



RCYC: Rentention

 Face-to-face survey of 655 families living in spill-affected areas of South Louisiana


• Wave 2, 2016: 74% retention

• Wave 3, 2018: ~74% retention

GCPI: Wave 3 Effort Tracking

- 7 months of fieldwork
- 2,422 phone calls
- 1,163 visits
 - Avg. 3.7 visits, 1.78 phone calls per case
- Over 60% completes by 3rd Visit
- Average case open 82 days
- Average complete open 48 days
- Completion peaked between 0-10 days
- ≥10 visits (N=52)

National Center for Disaster Preparedness

Considerations

Recommendations and key questions based on learnings from three cohort studies

Considerations: Data Storage & Management

- Mobile technology landscape continues to evolve
- Spatial data to aid sampling are not always readily available post-incident, may require significant processing and technical skill
 - Governmental agencies will have better access than others
 - Consider building partnerships and developing data use agreements pre-event
 - Spatial mismatch may introduce some sampling error (ie zip code + county + other)
 - Explore proxy data (eg cell phone data to locate a mobile population)
- Real-time + inter-wave data cleaning and management
- DOCUMENTATION Implement organizational best practices for file system management and documentation from previous and ongoing projects to create a best practice culture
- Pre-identify and learn platforms to build a database as quickly as possible not just platforms but also various technologies and staff skillsets
- Consider need for offline data access for field teams

Considerations: Population Access & Sampling Methods

- For exposed populations...
 - Most geographic data have administrative boundaries which may not be granular enough for to focus on a target population
 - Limitations in the speed of data availability
 - Literal access: gated communities and public housing
- Develop strategies to identify key local stakeholders, community gatekeepers, and partners to bolster credibility and trustworthiness
- Consider the ephemerality of your data will drive urgency
- Compile possible recruitment sources from existing registries or lists and develop data use/sharing agreements in advance of an event

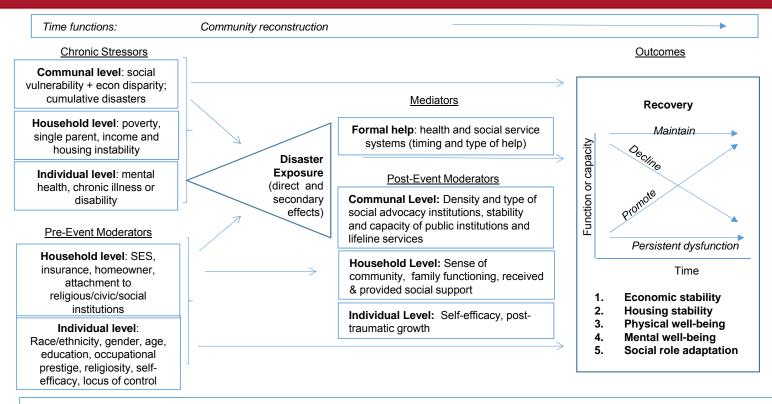
Considerations: Administrative & Operational

- Incentive Management
 - Assess institutional capability and guidelines on incentive management (especially IRB)
- Consider pre-drafted IRB templates and protocols for rapid deployment
- Field team management
 - Determine protocols for hiring students (paid or un-paid) and contractors
 - Draft Job Actions Sheets to assist in rapid Just-in-time training
- Face-to-face surveys are expensive pursue long-term funding if possible

Disaster Preparedness

Considerations: Customer Service/CRM

- Incentives and incentive amounts DO make a positive impact on response rates
 - Build into project budgets and ensure internal protocols for administrative management and tracking
- Reported addresses and USPS data do not always match
 - Return service requested can be valuable but not reliable particularly in rural areas
 - Ties back to data management and on-going staffing



Considerations: Customer Service

- Respondents should be valued for their time, energy, and experiences
 - Communicate research findings back to them in plain language and with clear graphics that are both culturally appropriate
 - Provide a single point of contact via phone AND via e-mail
 - Schedule regular correspondence to provide updated contact information
 - Consider staff time to collect and update records internally
 - Train field staff to be courteous, understanding, and when to walk away
- Implement robust quality control and assurance protocols protects the integrity of the data and institutional time

Socio-ecological Model of Recovery

Adapted from Abramson, DM, Stehling-Ariza, T., Park, Y.S., Walsh, L. and Culp, D (2010). "Measuring Individual Disaster Recovery: A Socio-ecological Framework." *Disaster Med and Public Health Prep* 4: S46-S54.

Rapid Research Response: Study Design

What is the research question?

- Disaster frame:
 - Short term recovery
 - Response phase / Mitigation
 - Long-term recovery
 - Crossover-Transition Phase

What is the study design?

- Cross-sectional: easy IRB, increased compliance, can be anonymous
- Longitudinal: Tracking recovery = larger commitment
- Primary vs Secondary data analysis
- Identify sampling frame (Potentially predisaster)

 National Center for
 - School enrollment, other registries
 Disaster Preparedness
 EARTH INSTITUTE | COLUMBIA UNIVERSITY

What type of survey instrument?

 Web, mail, phone, face-to face, secondary, anonymous

Who is the study population?

- Geography- exposure specific- county vs. registry (ER, inpatient)
- Exposure to hazardous agent
- Direct or Indirect Exposure
- Attributes of characteristic of indicator
 - All kids, vulnerable population, occupational/professional – first responder etc.

Rapid Research Response: Feasibility

Financial feasibility

- First draft budget
- Identify funding source
- Field operations survey cost (*All numbers exclusive of staff salary)
 - Face-to-face: \$200/person (final wave of G-CAFH ~\$400/respondent
 - Field & Phone: 125/person
 - Phone: \$75/person (now more expensive due to fewer landlines)
 - Mobile Office (RV) \$400 per day

Study Feasibility

- Internal vs external admin
- Internal vs external field team
- Field team risk assessment, environmental hazards
- Type of survey instrument
- Partnerships
- Access to technology and data systems

National Center for Disaster Preparedness

Acknowledgements

- Irwin Redlener, MD
- David Abramson, PhD MPH
- Jaishree Beedasy, PhD
- Tim Slack, PhD
- Kathryn Keating, LMSW
- NCDP, NYU, LSU, Rutgers Research Teams
- Countless Interviewers
- Respondents

Thank You

https://ncdp.columbia.edu

Jonathan Sury, MPH CPH jjs2154@columbia.edu

