The National Academies of Sciences, Engineering, and Medicine Committee on radioactive sources and alternative technologies Washington DC, USA June 26, 2020

Paul Wynne, Chairman pwynne@iiaglobal.com

Agenda

- Association
- Applications
- Radiation Processing Business
- Technologies
- Conclusion

The association

- Not-for-Profit. NGO status with IAEA
- Technology Neutral
- ~ 80 Members, 6 continents
- Website 30,000 visitors 165 countries
- Communications Direct, Conferences, Newsletter, Social Media
- Affiliates & Working Relationships

International Meeting on Radiation Processing (IMRP20)

November 7 - 12, 2021

MEVEX Corporation (www.mevex.com
and STERIS A

The association

New entity & branch

https://sfsap.org/

To define how the competence of sterility assurance professionals can be demonstrated

Initial funding from iia, AAMI and ASTM and in collaboration with leading medical co's

https://psipglobal.org/

To advance the commercial application of irradiation as a phytosanitary measure globally

Branch of iia

Benefiting the Lives of Millions of People Around the World.

Improving the characteristics of many everyday products including food, healthcare, & consumer products.

Some applications use only or mostly

Gamma or E-beam

Main commercial applications

Enhancement of polymers: number 1 use of irradiation

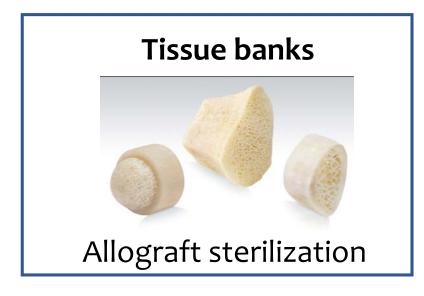
- Through cross-linking, polymerization or grafting
- Application to wires and cables, piping, heat shrinkables, foams, etc.
- Continuously innovating

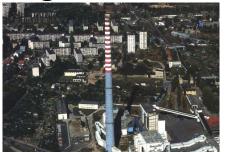
Sterilization of disposable medical devices

- Irradiation preferred when materials are suitable
- Main activity of irradiation service providers except in China
- Annual growth rate ~8%

Other commercial applications

Other commercial applications


Non-commercial applications



Developing applications

Cleaner air

Sludge treatment

Hygiene

Inactivation of bio-hazards

Safer environment

Ships ballast water

Prevent bio-invasion

The radiation processing business

- Multibillion USD business growing by 5-10 % a year
- Capital intensive, consolidation and evolution
- Contractors, suppliers, manufacturers, science
- Research universities and institutes

The radiation processing business

Out-sourced radiation processing

- Very large volumes processed for manufacturers in many industries: medical disposables, biotech products, packaging, etc.
- Gamma dominant
- Ranges from multinational players to SMEs (one country, one site, one technology)

In-house radiation processing

- Wire & Cable (Raychem), tires, cables (large and medium size companies)
- Medical devices manufacturers (e.g. BD, Boston Scientific, JnJ),
- Accelerators dominant
- Relative importance of technologies and applications vary according to regions
- Excellent safety & security record

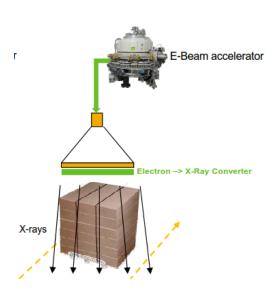
Technology - Cobalt 60 - Gamma

- ~ 260 commercial gamma irradiators (> 0.3 MCi)
- > 400 million curies of cobalt-60 installed
- Procurement of cobalt-60
- Simple, robust and mature technology
- Challenges: cost, regulatory, disposal
- Dynamics: Few new applications or gamma irradiators being built



Technology - Accelerators - Eb

- Typically between 100 keV and 10MeV for radiation processing
- Globally more than 3,000 accelerators in use.
- Robust growth with > 150 units installed each year
- Multiple suppliers: North America, Russia, Europe and China
- Reliability has improved considerably
- Not well suited where quality of electricity supply is poor



Technology - Accelerators - X-ray

- Industrial use of X-ray still in its infancy
- Limited number of manufacturers can supply suitable accelerators
- Adoption (medical device) slow: cost/re-registration, limited availability/lack of back-up, familiarity, risk aversion, first mover reluctance.
- Will increasingly compete with gamma as economics improve.
- In 2020 number of new X-ray units and gamma units comparable.

Technology investment – decision criteria

Technology selection based on multiple factors:

- Market Demand and Product Requirements: forecasting demand/volume.
- Material compatibility: product and packaging
- Density / DUR / Operational: Bag, box, pallet, reel or tray.
- Knowledge & Reliability: investment and operational.
- **Investment Returns**: break-even point, cashflow & ROI.
- Conversion Cost: (re)registration & (re)validation for healthcare products.
- **Speed & Time**: Processing time / throughput / logistics.
- Regulatory: compliance and/or licensing costs / complexity.
- Investment horizons and expansions options: years.

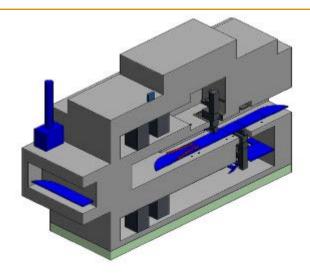
Alternative Technology needs

ACCELERATORS

- Improve efficiency: power consumption/pulsed beams
- Improve flexibility: design and customization/ multiple beams/variable energies
- Improved controls: computing and software, mathematical modelling, remote diagnostics

sii 🗶

Technology - Accelerators


Examples of development:

IBA Industria

E-beam and X-ray from a single accelerator:

Maximum flexibility to treat wide product range by moving x-ray target in or out

ov S. MEVEX Corporation

2 accelerators above and below conveyor:

High throughput, low DUR, no product flipping. Maximum flexibility and back-up

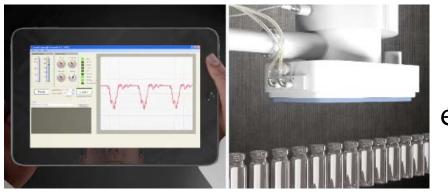
Technology - Low energy electrons and X-ray

- Potential surface treatments for decontamination probably underestimated in the past
- Equivalent effects to high energy electrons and X photons on microorganisms
- Avoids need for bulky shielding
- Easy to integrate into existing processing lines
- New lamps have now come in addition to machines

Technology - In-line EB treatment spreading in industry

Liquid Packaging

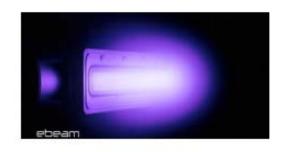
Tetra Pak® E-beam aseptic filling system

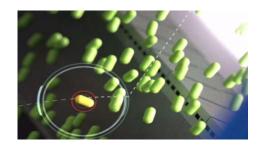


Shibuya Kyogo On-line EB sterilization of PET bottles

Biopharma

Getinge E-beam Tub Sterstar Sterilizers (empty syringes)


ITHPP (pulsed électrons)


Technology - Low energy electrons and X-Ray

Recent developments:

New metal-ceramic lamps (300 kV electrons) + product presentation

Microbial decontamination of dried food ingredients

Surface decontamination of seeds (alternative to pesticides)

First machines in the US, Spain and Germany

First machines in Germany and the Netherlands

Technology - Low energy electrons and X ray cabinets for research and SIT

EB cabinets

X ray cabinets

(Reliability needs to be improved to deploy SIT programs)

Summary

- Gamma. Well established and robust technology. Still favoured by many.
- **E-beam.** Growing number of facilities / applications. Dynamic & innovative
- **X-ray.** No significant market share yet but increasingly attractive
- Low energy electrons and X-ray. Developing & promising for online processing.

All technologies have their pros and cons

Outlook

- At this moment, all technologies have their relevance and are needed
- All technologies will continue to co-exist over the short and mid-term
- No switch between technologies but more likely a progressive transition
- Gamma growth mostly through maximizing use of existing irradiators
- Gamma operators consider alternative technologies when capacity reached
- Market should remain the main driver of evolution

The iia is technology neutral

