

Americium Surrogate Suspension-Resuspension Study

PRESENTED BY

Andrew Glen, PhD

Contributions by: Heather M. Pennington, Steven Storch

National Academies of Sciences - Radioactive Sources: Applications and Alternative Technologies

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Tracking #1033265

Funding Acknowledgment

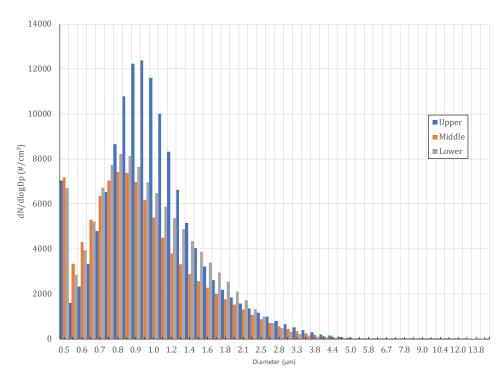
1

The authors would like to acknowledge the following people, without whom the project could not have been performed. Mark West, ORS for his general support of systems studies and this study in particular. Andres Sanchez provided significant background information and support getting the documentation in place to conduct the tests. Charles Potter and Lainy Cochran who provided guidance throughout this project. Many thanks to Steve Storch and Laura Lemieux, who provided test setup and execution support.

<u>Objective:</u> Perform a resuspension study considering different surfaces in ambient and humid conditions looking at relatively early time resuspension.

Goals and Benefits:

Introduction


- Provide insight into resuspension methods
- Validation or improvements to resuspension source terms for models such as Turbo FRMAC

Utilizing:

Surrogate Cerium Oxide (CeO 2)

Large Aerosol Dissemination Chamber

Varying substrate types and resuspension methods

Ð

Limitations in Current Datasets

Laboratory/Synthetic Experiment Datasets	Event-Based Datasets					
Isolated Processes/Experimental Constraints: Well constrained	Meteorology: Uncontrolled meteorological conditions both at					
data often addressing only one process of the resuspension	event and post-event, including meteorology generated by event,					
mechanism	precipitation and wash-out					
Simulated Environment: Wind tunnel and environmental	Lofting: Lofting of material into mid/upper levels of the					
chambers have limited heights and do not account for	atmosphere will separate material from the surface boundary layer					
entrainment, mixing or advection of material to upper levels	and inhibit settling					
Surrogate Material: Laboratory tests are often limited to using	Contamination: Advection of contamination from previous tests					
surrogate material with similar but ultimately different physical and	*					
chemical properties	into area of deposition					
Surface Representation: Applying surface substrates to represent	Topographical impacts: Material can be preferentially removed					
real life ground level surfaces	from the boundary layer due to impacts with topography					
	Surface Sink: Radionuclide material which is trapped by the surface					
	soils/material					
	Initial Deposition vs. Resuspension: Identifying when the initial					
	deposition of radionuclide material is complete as material is					
	initially elevated to unquantified levels. The resuspension process					
	begins while material is still depositing					
	Height of Initial Release: The height of initial release impacts the					
	initial deposition rate, which in turn will impact the lateral					
	variability and advection/spread of any radionuclides.					

SAND2020-4899 (Table 1-1)

Current Estimates of Resuspension

Marshall et al., reprocessed data from Maxwell & Anspaugh:

- Resuspension factors within first few days to weeks centered around 10⁻⁶ m⁻¹
- Range spanning 5 orders of magnitude

Maxwell & Anspaugh:

$$K_t = \left(1.0E^{-5} \times e^{-8.1E^{-7} \times t}\right) + \left(7.0E^{-9} \times e^{-2.31E^{-8} \times t}\right) + 1.0E^{-9}$$

Turbo FRMAC has an additional option to utilize the resuspension factors described in NCRP Report No. 129 [6], which are as follows:

- $K = 10^{-6} \text{ m}^{-1} \text{ for near term events} < 1 \text{ day,}$
- $K = 10^{-6} \text{ m}^{-1} / \text{t for time} > 1 \text{ day and} < 1,000 \text{ days, or}$
- $K = 10^{-9} \text{ m}^{-1} \text{ for } t > 1,000 \text{ days.}$

Rolling "garage" doors

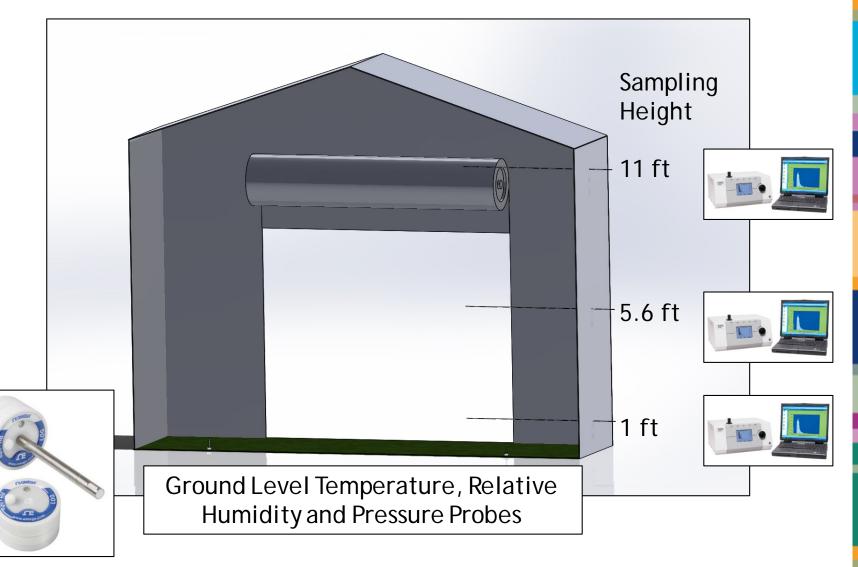
Ability to have multiple substrate floors

Black pond liner internal walls

- Provides uniformity and repeatability for experimental series
- Clean down and reset

17 ft x 18ft x 12-15 ft

Sandia National Laboratories


Real time particle size distribution and concentration

 Aerodynamic Particle Sizers (APS) at three different heights

Temperature, relative humidity and pressure probes at ground level

GoPro Cameras

Witness Coupons

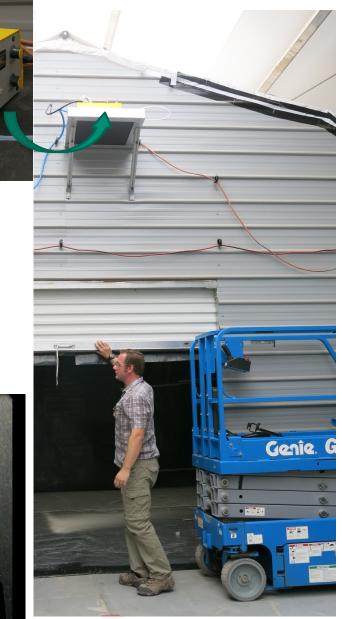
SAND2020-4899 (Figure 2-9)

Pond Liner

- Manufactured by Raven Engineered Films HydraFlex H30B
- Thickness = 28.5 Mil
- Protective surface for entire chamber

Artificial Turf

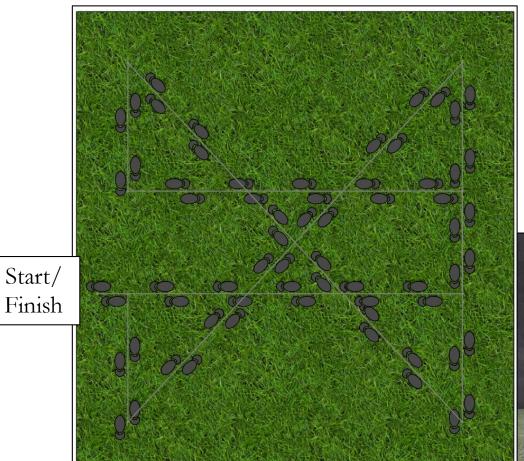
SynLawn DuraGrass60


Patio Pavers

- Riccobene Masonary Concrete Square Pavers
- 18" x 2" Square

Initial Aerosolization

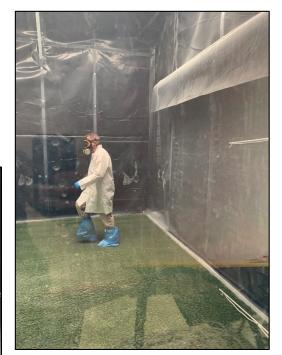
(h)


Aerosol enters the chamber via a \sim 12 ft high port on the front of the chamber

Chamber after ~2 hr. and 15 min

SAND2020-4899 (Figure 2-10)

Resuspension Analysis of Walking in Chamber



Fixed Path in Chamber

Each Resuspension Event Consisted of 3 Laps

Approximately 90 - 120 seconds to complete

Resuspended Cloud

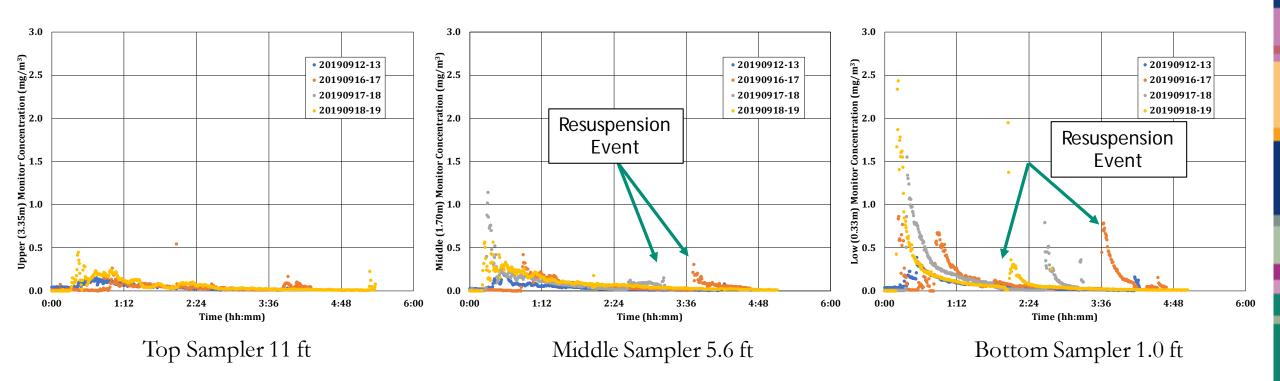
Resuspension Analysis of Driving in Chamber

Typically One Pass – Forward and Reverse Out

Approximately 120 seconds to complete

Both front and back doors are open

• Expect dilution at higher levels



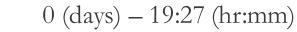
Resuspended Cloud

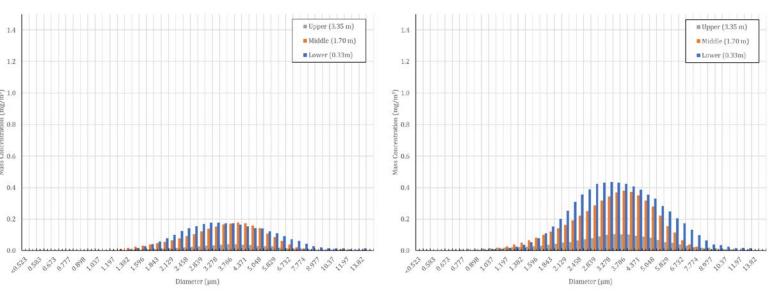
Resuspension Time Series Examples

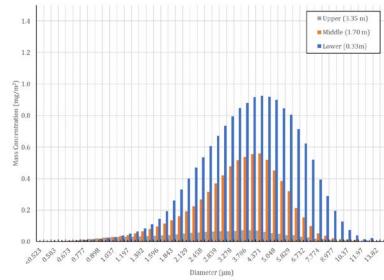
Resuspension Events occurred after chamber reaches background concentration Each Resuspension Event can be seen as a peaks in concentration timeseries

Size Distributions - Pond Liner - Walking


(h)

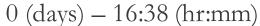

Substrate: Pond Liner

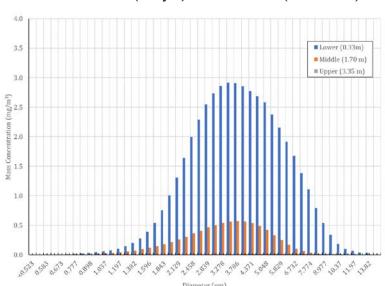

Method: Walking 3 Passes


Nominal Dp = $1 \mu m$

$$\Delta \text{time} = 0 \text{ (days)} - 13:27 \text{ (hr:mm)}$$

> Increasing concentrations from resuspension with time from deposition

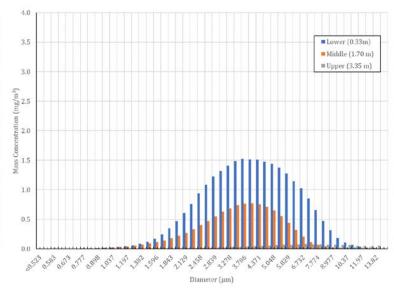

Size Distributions - Grass - Walking


Substrate: Grass

Method: Walking 3 Passes

Nominal Dp = 1 μ m

$$\Delta \text{time} = 0 \text{ (days)} - 16:25 \text{ (hr:mm)}$$

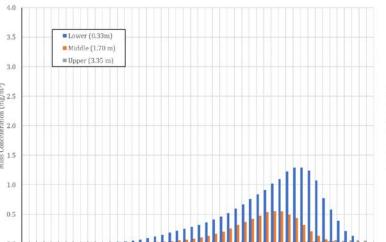


> ~ 3x the aerosol concentration resuspended compared to pond liner

SAND2020-4899 (Figure 3-6, 3-7 and 3-8)

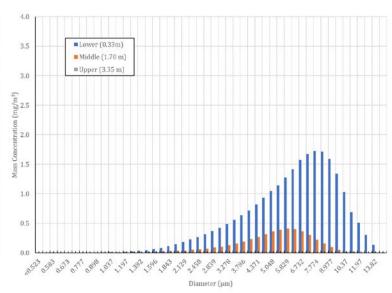
Size Distributions - Grass - Walking

Substrate: Grass


Method: Walking 3 Passes

Nominal Dp = $10 \mu m$

$$\Delta \text{time} = 0 \text{ (days)} - 23:44 \text{ (hr:mm)}$$



$$1 (days) - 23:05 (hr:mm)$$

> Decrease in aerosol concentration resuspended over time since initial deposition

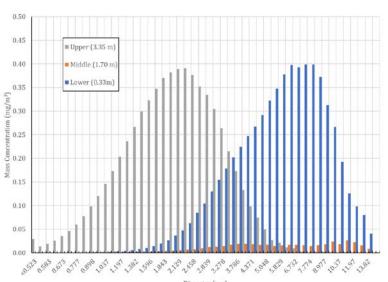
Size Distributions - Pavers - Walking

Substrate: Pavers

Lower (0.33m)

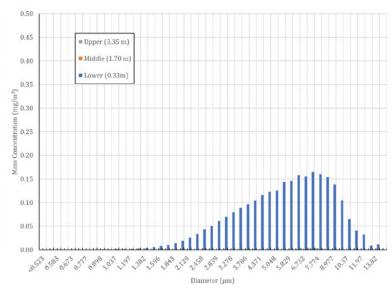
0.45

0.25


0.10 0.05 Method: Walking 3 Passes

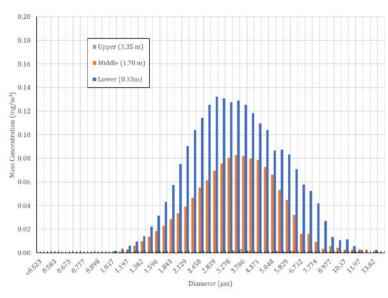
Nominal $Dp = 10 \mu m$

$$\Delta \text{time} = 0 \text{ (days)} - 21:39 \text{ (hr:mm)}$$

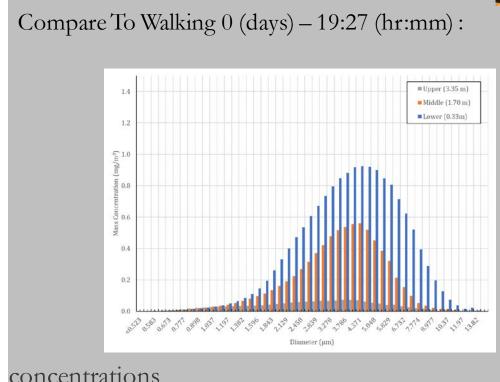


$$13 \text{ (days)} - 23:09 \text{ (hr:mm)}$$

> Impacts from water vapor condensation at upper level monitor, low resuspension


Size Distributions - Pond Liner - Vehicle

Substrate: Pond Liner


Method: Vehicle

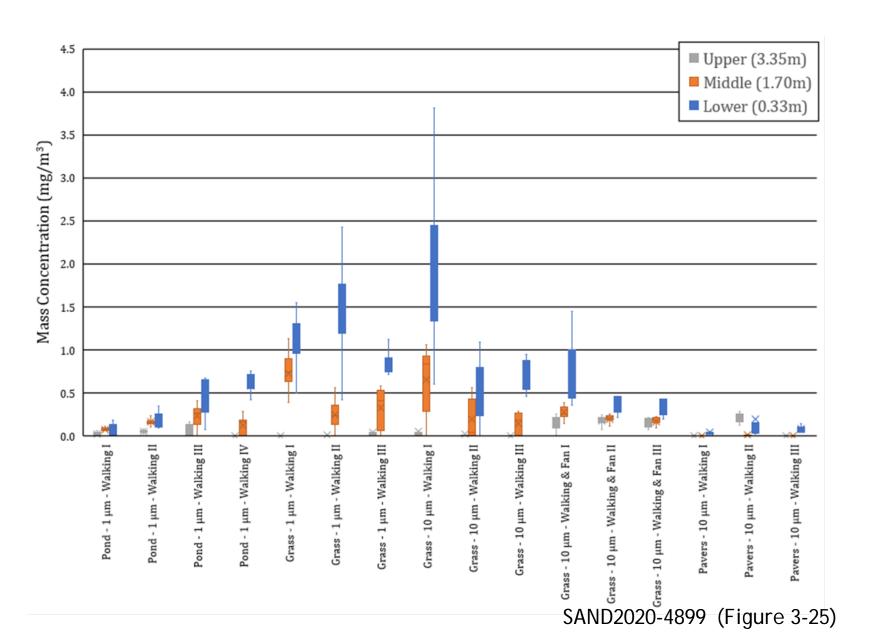
Nominal Dp = $1 \mu m$

 $\Delta \text{time} = 0 \text{ (days)} - 21:39 \text{ (hr:mm)}$

> Order of magnitude reduction in resuspended concentrations

SAND2020-4899 (Figure 3-5)

Walking Resuspension Events


Box & Whisker Plot

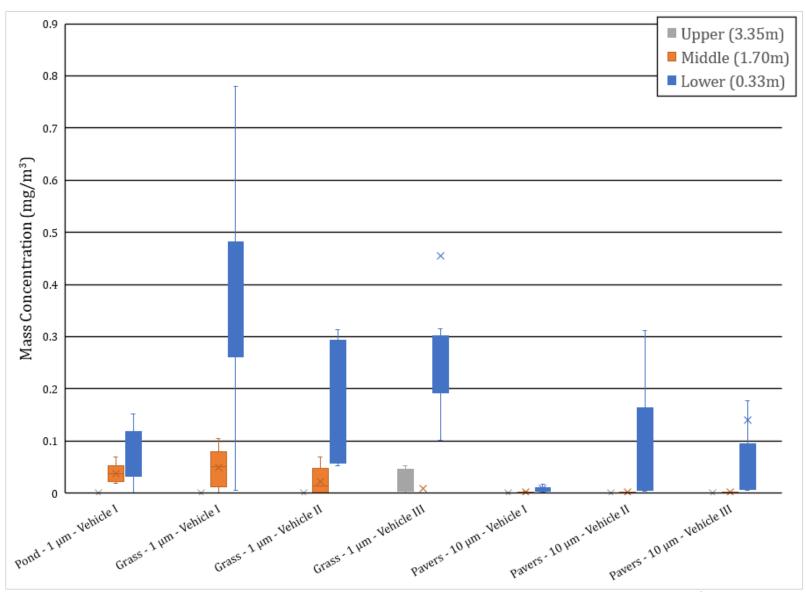
- Min/Max Values (whiskers)
- 1st, Median, 3rd Quartile (box)
- Mean (x)

Events + 3 min Mixing Window

Lower Monitor (0.33m) shows significant impact and variation

Grass shows higher resuspended concentrations at Mid/Lower levels

Vehicle Driven Resuspension


Box & Whisker Plot

- Min/Max Values (whiskers)
- 1st, Median, 3rd Quartile (box)
- Mean (x)

Events + 3 min Mixing Window

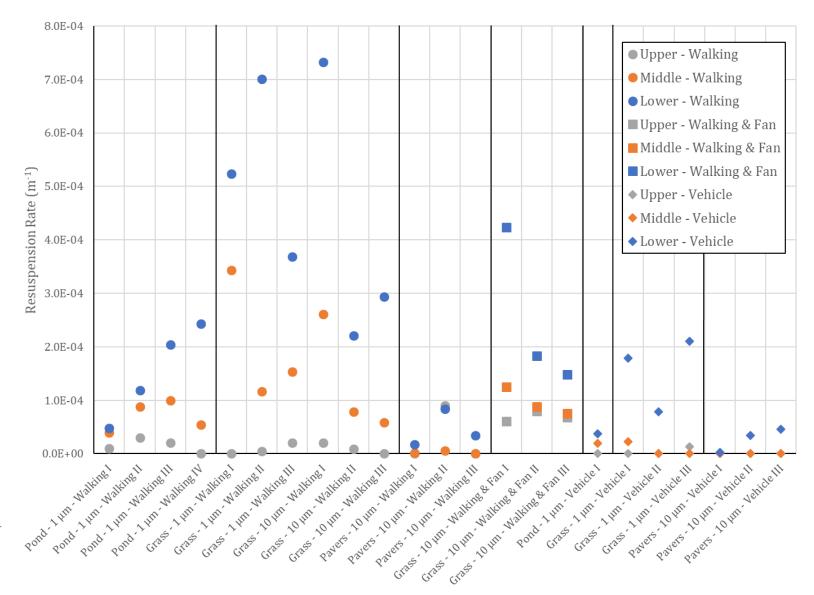
Lower Monitor (0.33m) shows significant impact and variation

Middle Monitor is impacted but less substantially

SAND2020-4899 (Figure 3-26)

Resuspension Rates as a Function of Substrate, Mechanism and

PSD


Resuspension Factor, K:

$$K = S_f = \frac{\chi}{D}$$

 χ = Measured air concentration: (mg/m³)

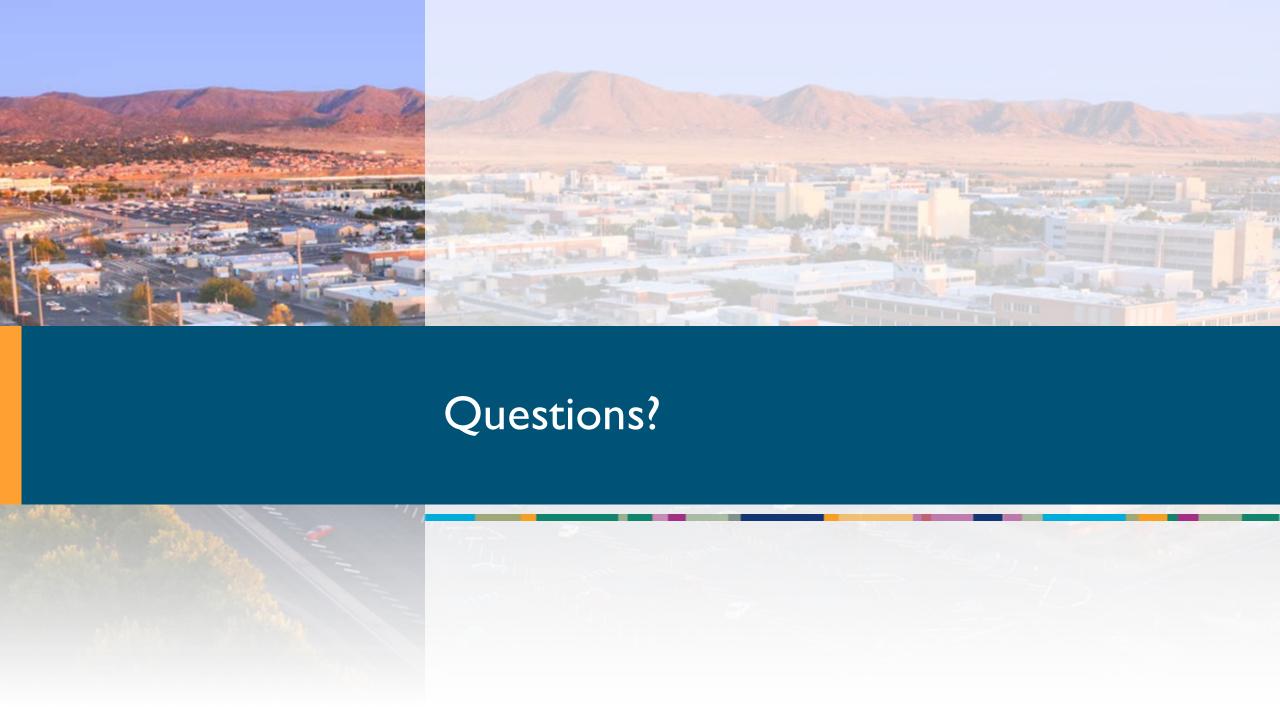
D = Area DepositionDensity (mg/m²)

Urban Setting K is lower than Grass

Conclusions

- Evaluation of mass concentration, size distribution and resuspension rate under well constrained conditions:
 - Pond Liner, Artificial Grass, Pavers
 - Walking, Vehicle, Walking and Wind Blown
- PSD of resuspended particles can vary as a function of:
 - Height, substrate surface, time from deposition

Artificial Grass


- Highest mass concentration and highest resuspension factor for walking ($K = 10^{-4} \text{ m}^{-1}$) and vehicle ($K = 10^{-4} \text{ to } 10^{-5} \text{ m}^{-1}$) mechanisms
- Higher resuspension factor than in literature

Paved Surface

- $^{\circ}$ Lower mass concentration and resuspension factors for walking (K = 10^{-5} m⁻¹) and vehicle (K = 10^{-5} to 10^{-6} m⁻¹)
- \circ Resuspension as a function of time from deposition, 5 7 days showed highest resuspension rates

Conclusions

- Walking & Windblown
 - More applicable to real life applications
 - ° Resuspension at lower levels (0.3m) is preferential for larger sized particles ($K = 10^{-4} \text{ m}^{-1}$)
 - Bi-modal at mid level (1.7m) ($K = 10^{-4} \text{ to } 10^{-5} \text{ m}^{-1}$)
 - Small particles at higher levels (3.35 m) ($K = 10^{-5} \,\mathrm{m}^{-1}$)
- ° Evaluation of source terms of aerosol resuspension under constrained conditions
- Near-term dataset (0 to 15 days)
- Does not account for:
 - Complete Deposition
 - Transport
 - Entrainment or maintenance of lofted aerosol
 - Aerosolization and dissemination methods
- Using one number for modeling doesn't cross the breadth of surfaces and mechanisms

Material

²⁴¹Am specific activity of 3.428 Ci/gram

Material Properties	AmO ₂	CeO ₂
Density (g/cm ³)	7.65	11.68
Bulk Modulus (GPa)	213.7	217.7

Typical Hear	Form	Activity (Ci)				
Typical Uses	FUI III	Min	Max	Typical		
Calibration Facilities	Am	5	20	10		
Research reactor startup	AmBe	2	5	2		
Well logging	AmBe	0.5	23	20		
Thickness gauges	Am	0.3	0.6	0.6		
Fill level gauges	Am	0.012	0.12	0.06		
Moisture detectors	AmBe	0.05	0.1	0.05		
Moisture/density gauges	AmBe	0.01	0.1	0.05		
Bone densitometry	Am	0.027	0.27	0.14		
Static eliminators	Am	0.03	0.11	0.03		

^a First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Christoph Loschen, Javier Carrasco, Konstantin M. Neyman, and Francesc Illas; The American Physical Society, 035115, 2007

^b Electronic, mechanical, and thermodynamic properties of americium dioxide, Yong Lu, Yu Yang, Fawei Zheng, Bao-Tian Wang, and Ping Zhang; Journal of Nuclear Materials, 441 (411-420), 2013.

Summary of Results

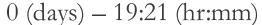
	Nominal	Daniel Time Since		Conditions During Resuspension		Mode Diameter (μm)			Average Concentration (mg/m ³)			Resuspension Factor (m ⁻¹)		
	Particle Diameter (μm)	Resuspension Event	Deposition (day - hr:min)	Temperature (°C)	Relative Humidity (%)	Upper (3.35m)	Middle (1.70 m)	Lower (0.33m)	Upper (3.35m)	Middle (1.70 m)	Lower (0.33m)	Upper (3.35m)	Middle (1.70m)	Lower (0.33m)
er	1	Walking I	0 - 13:27	27.7	36.3	4.07	4.07	3.05	0.019	0.073	0.089	1.03E-05	3.96E-05	4.82E-05
Lin	1	Walking II	0 - 13:36	28.4	37.0	3.52	3.79	3.28	0.054	0.162	0.219	2.95E-05	8.75E-05	1.19E-04
Pond Liner	1	Walking III	0 - 19:27	27.0	42.8	4.07	4.37	4.37	0.048	0.239	0.490	2.00E-05	9.95E-05	2.04E-04
Po	1	Walking IV	0 - 22:07	30.1	36.8	12.86	3.79	4.70	N/A	0.130	0.584	N/A	5.40E-05	2.43E-04
	1	Walking I	0 - 16:25	27.6	44.6	0.54	4.37	5.05	0.000	0.723	1.101	0.00E+00	3.43E-04	5.23E-04
	1	Walking II	0 - 16:38	28.3	51.0	5.83	3.79	3.52	0.009	0.253	1.516	4.36E-06	1.17E-04	7.01E-04
	1	Walking III	0 - 21:29	30.2	57.9	6.73	4.07	3.79	0.044	0.331	0.797	2.01E-05	1.53E-04	3.68E-04
S	10	Walking I	0 - 23:44	25.9	17.3	8.98	5.83	7.77	0.051	0.658	1.847	2.02E-05	2.61E-04	7.32E-04
Grass	10	Walking II	1 - 20:33	18.8	10.0	10.37	5.83	7.77	0.022	0.198	0.556	8.70E-06	7.85E-05	2.21E-04
9	10	Walking III	1 - 23:05	22.7	7.8	11.97	5.83	7.77	0.001	0.147	0.740	3.70E-07	5.82E-05	2.94E-04
	10	Walking & Fan I	0 - 20:09	13.7	22.3	5.05	13.82	7.77	0.134	0.277	0.938	6.04E-05	1.25E-04	4.23E-04
	10	Walking & Fan II	1 - 16:35	10.2	57.1	5.43	11.97	7.77	0.177	0.196	0.405	7.99E-05	8.82E-05	1.83E-04
	10	Walking & Fan III	15 - 21:00	7.7	27.3	5.43	11.97	7.77	0.150	0.168	0.327	6.76E-05	7.57E-05	1.48E-04
SJ	10	Walking I	0 - 21:39	13.7	23.2	0.84	11.97	5.05	N/A	0.004	0.040	N/A	1.55E-06	1.73E-05
Pavers	10	Walking II *	7 - 22:28	9.5	50.7	2.29	11.14	7.77	*	0.014	0.196	*	6.01E-06	8.37E-05
	10	Walking III	13 - 23:09	10.2	34.1	7.77	0.54	7.23	and	0.000	0.081	N/A	0.00E+00	3.44E-05
Pond Liner	1	Vehicle I	0 - 17:13	30.5	41.2	3.79	3.52	2.84	N/A	0.037	0.070	N/A	1.98E-05	3.76E-05
S	1	Vehicle I	0 - 18:45	29.6	44.7	0.54	4.37	3.28	0.000	0.048	0.375	0.00E+00	2.29E-05	1.78E-04
Grass	1	Vehicle II	0 - 19:21	29.6	43.3	0.54	4.70	4.07	0.000	N/A	0.164	0.00E+00	N/A	7.81E-05
9	1	Vehicle III	0 - 18:26	28.3	51.0	7.77	5.05	3.52	0.028	N/A	0.454	1.28E-05	N/A	2.10E-04
S	10	Vehicle I	1 - 1:13	13.6	38.1	5.43	13.82	5.43	0.001	0.002	0.009	2.30E-07	6.18E-07	2.89E-06
Pavers	10	Vehicle II	5 - 0:37	10.7	19.4	5.83	3.79	6.73	0.000	0.002	0.104	4.58E-08	5.16E-07	3.44E-05
Pa	10	Vehicle III	5 - 0:44	10.7	19.2	4.37	11.97	7.23	0.000	0.002	0.139	7.77E-08	5.40E-07	4.60E-05

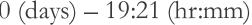
^{*} Data collected during this test was impacted by water droplets nucleating in the resuspension chamber at the upper level. As such this data was excluded from the analysis.

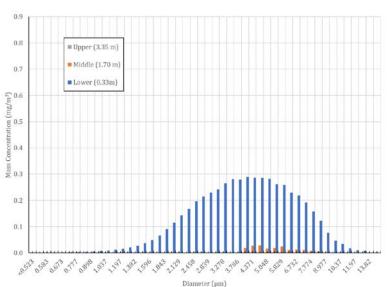
0.18

0.10

0.04 0.02

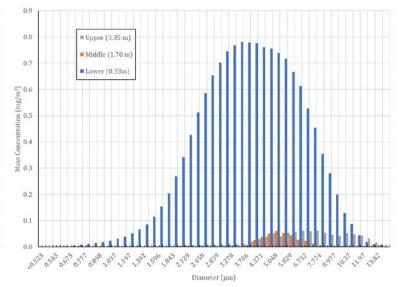

Size Distributions – Grass – Vehicle


Substrate: Grass


Method: Vehicle

Nominal Dp = $1 \mu m$

$$\Delta \text{time} = 0 \text{ (days)} - 18:45 \text{ (hr:mm)}$$

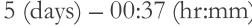


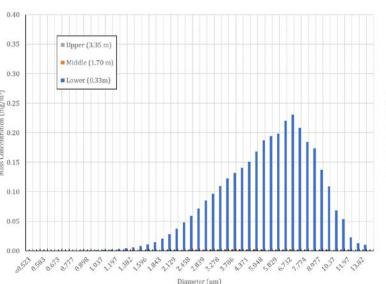
$$0 \text{ (days)} - 18:26 \text{ (hr:mm)}$$

Mid-level concentrations are reduced over time

0.20

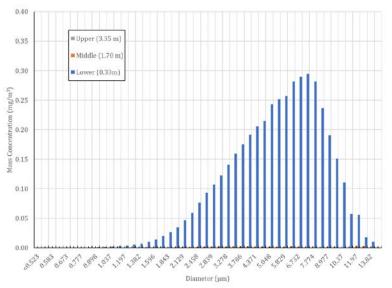
Size Distributions - Pavers - Vehicle


Substrate: Pavers


Method: Vehicle

Nominal $Dp = 10 \mu m$

$$\Delta$$
time = 1 (days) – 01:13 (hr:mm)



5 (days) - 00:44 (hr:mm)

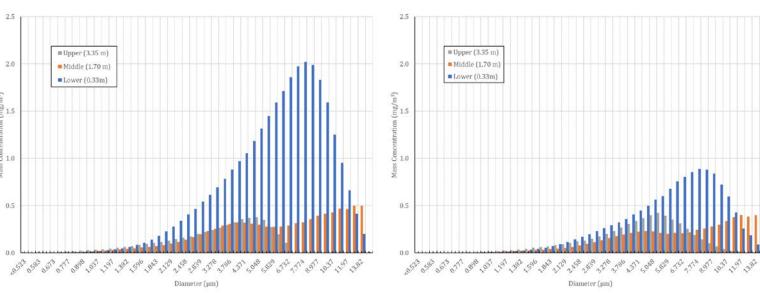
Lower concentrations than grass. Increased resuspension with time from deposition

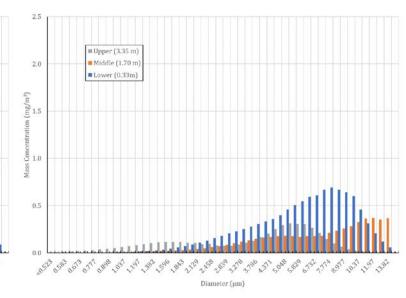
Size Distributions - Grass - Wind Blown

Substrate: Grass

Method: Walking and Wind Blown

Nominal $Dp = 10 \mu m$


$$\Delta \text{time} = 0 \text{ (days)} - 20.09 \text{ (hr:mm)}$$


$$1 (days) - 16:35 (hr:mm)$$

$$15 \text{ (days)} - 21:00 \text{ (hr:mm)}$$

More representative of real world. Well mixed with agglomeration