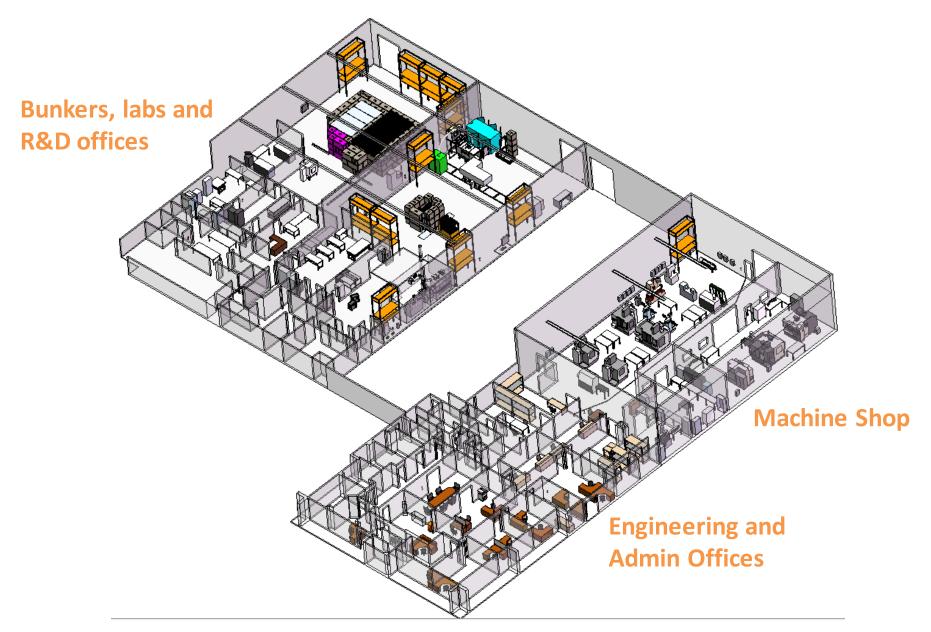
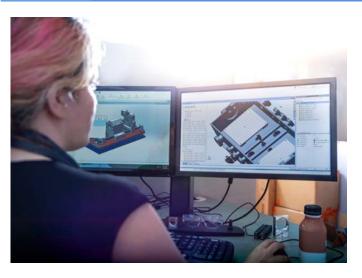


RadiaBeam's Projects on Alternative Technologies for Medical and Industrial Applications

NAS Meeting, December 17, 2020

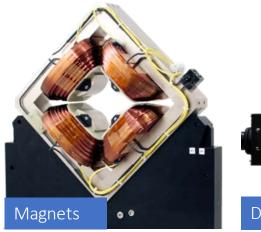
RadiaBeam Overview


- RadiaBeam founded in 2004
- ~50 employees and growing
- 30,000 ft² headquarters in Santa Monica, CA
- Accelerator R&D, design, engineering, manufacturing and testing all under one roof in a dynamic, small-business setting
- Products: accelerator components (RF structures, magnets, diagnostics), medical/industrial accelerator systems


Our facility

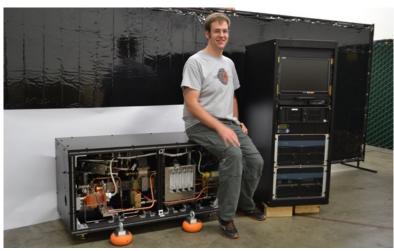
Capabilities

- Physics design and beam dynamics simulations
- RF and mechanical design/engineering
- Manufacturing/in-house machine shop
- Coil winding and epoxy encapsulation
- Precision magnetic testing
- Low-power and high-power RF testing
- Radiation bunkers with RF stations
- E-beam and X-ray measurement equipment



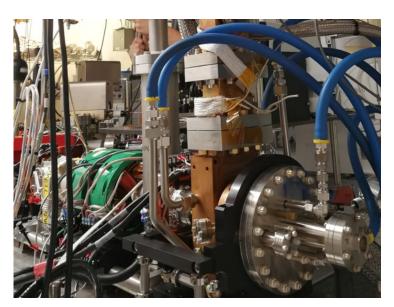
Products

■ Thousands of products delivered since 2004 with new products every year.



R&D program

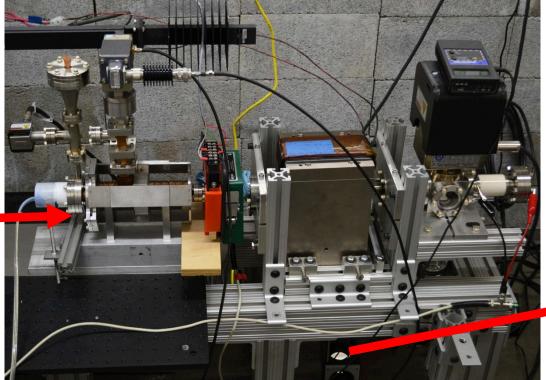
LCLS Dechirper

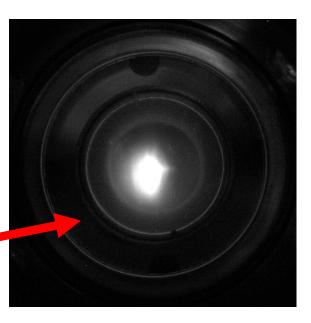


Industriallinacs

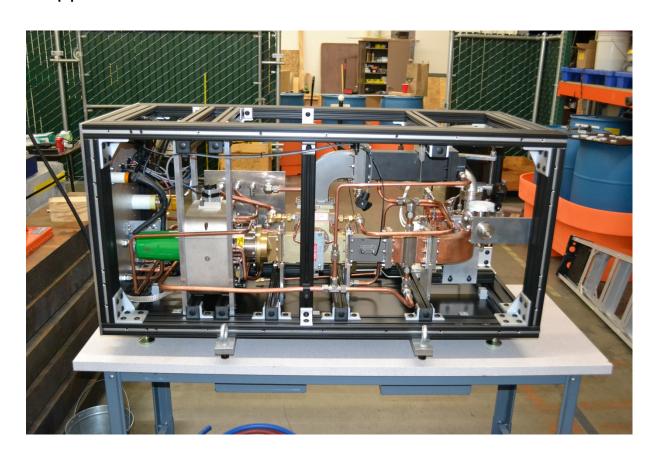
IOTA beamline

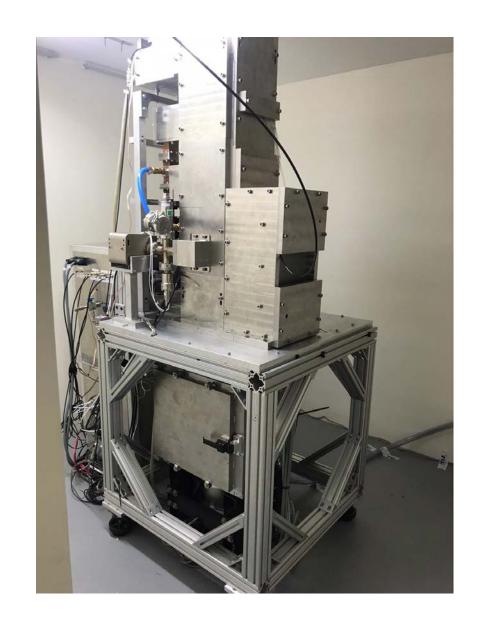
APS Gun


Radiotherapy system (spinoff)


Past radioactive source replacement R&D

- Microlinac (1 MeV) and blood irradiator (2 MeV) (2010 2013)
 - Proposed X-band linacs with inexpensive magnetrons/RF power systems
 - Built and tested prototype linacs, but too expensive for application
- Experience was foundation of our commercial accelerator developments



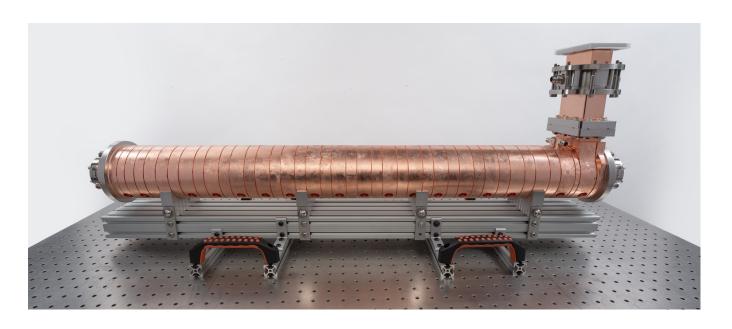


Industrial accelerator developments

- 2013 now: Customized industrial linac systems
- 9 MeV, e-beam or X-ray output
- Wide range of parameters and variability for specialized applications

Medical linacs

- S- and X-band OEM medical linacs
- First order in 2017, currently in production at a rate of 20/year
- Linacs conditioned and hot-tested in house, ready for installation at end-user site
- Exceed all performance requirements (dose rate, symmetry, dark current, vacuum, etc.)
- Executed accelerated life testing (10-year lifecycle)



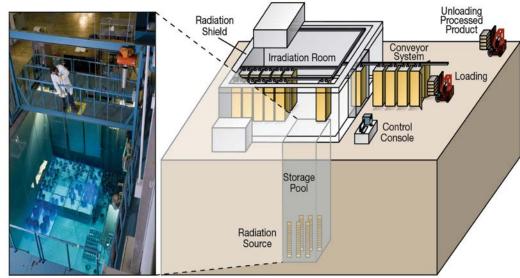
Newest product: high power linacs

- Order in April 2020, first delivery in November 2020
- 10 MeV, 20 kW linacs
- For food irradiation and medical sterilization
- Conditioned at RadiaBeam before delivery to customer

Challenges/lessons learned

- High power systems: cost dominated by RF power system (modulator)
 - Modulator costs ~\$15 per Watt of avg RF power
- Low power systems: cost dominated by accelerating structure manufacturing
 - Fixed cost, ~\$100k +/- \$50k depending on what's included
 - Our current research is focused on reducing this cost
- Mature solutions and market pull already exists for high power accelerators
- Low power systems are smaller, more cost sensitive, and more diverse
- New accelerator development is expensive and time consuming, often exceeds what can be done
 in an SBIR project
- Customers don't want to foot the entire bill
- Experience helps, but takes many years and millions of \$ to develop

Current SBIR projects


- 1. Safe, High-Throughput, Self-Contained Irradiator (Phase II started 9/2020)
 - Replacement for Cs-137, Co-60 in self-contained irradiators
- 2. Ultra Portable X-Ray Source for Field Radiography (Phase I started 7/2020)
 - Replacement for Ir-192 in field radiography
- 3. Compact, Improved **Betatron** X-ray Source (Phase I started 7/2020)
 - Replacement for Co-60 in field radiography

	1 - Irradiator	2 – Portable	3 - Betatron
Energy [MeV]	3	1	6
Avg. current [μA]	100	33	0.45
Avg. power [W]	300	33	2.7
X-ray dose rate @ 1 m [cGy/min]	150	1.0	5.4
Size [LxWxH, cm]	125x110x75	30x30x16	70x44x35
Weight [kg]	5,000	20	45

Irradiator - motivation

- Large, panoramic irradiators are currently being replaced by accelerators
- Smaller ones are more difficult to replace, but there are more of them, and they are at higher risk
 - Recent IAEA meeting/report estimates 2,000 3,000 worldwide!
- Applications include:
 - Blood irradiation
 - Radiobiological research (e.g. cell cultures, small animals)
 - Radiation effects testing (i.e. space electronics)
 - Detector calibration
 - Space electronics testing
 - Small volume, high value product irradiation (e.g. cannabis and extracts)
 - Sterile Insect Technique

Large

Small

Sterile Insect Technique (SIT)

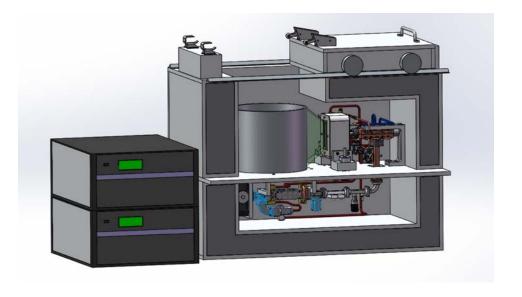
- Reduce pest population by releasing sterile insects into the environment
- Used to control agricultural pests, and, to a lesser extent, disease-bearing pests
- e.g. Tse-tse flies in Africa, Med flies in Americas, Zika bearing mosquitos

A. Bakri et al. Sterilizing Insects with Ionizing Radiation, pp. 233-268. In: V.A. Dyck, J. Hendrichs and A.S. Robinson (eds.), Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, Netherlands. (2005)

Location of facility	Insect reared	Dose (Gy) ¹	Initial activity (kCi)	Irradiator model (MANUFACTURER)	Source
Argentina	Ceratitis capitata ⁴	110	20	IMCO-20 ²	Co-60
Canada	Cydia pomonella ⁵	150	24	Gammacell® 220² (NORDION)	Co-60
Chile	Ceratitis capitata	120	160	Gammacell [®] 220 ² (NORDION)	Co-60
Guatemala	Ceratitis capitata	100– 145	11	Gammacell® 220 E² (2 units) (NORDION)	Co-60
			12	Gammacell® 220 R ² (J. L. SHEPHERD)	Co-60
			42	Husman 521A ² (ISOMEDIX)	Cs-137
			46	Husman 521 ² (ISOMEDIX)	Cs-137
Mexico	Anastrepha ludens ⁶	80	35	JS-7400 ³ (NORDION)	Co-60
	Anastrepha obliqua ⁷	80			
	Ceratitis capitata	100			
Mexico	Cochliomyia hominivorax ⁸	80	47	Husman 520 ² (3 units) (ISOMEDIX)	Cs-137
Philippines	Bactrocera philippinensis ⁹	64– 104	30	GB 651 PT ³ (NORDION)	Co-60
Portugal	Ceratitis capitata	100	20	Gammacell® 220 ² (NORDION)	Co-60
South Africa	Ceratitis capitata	90	10	(LOCAL MANUFACTURER) ³	Co-60
Thailand	Bactrocera dorsalis ¹⁰	90	24	Gammacell® 220 ² (NORDION)	Co-60
USA (Hawaii) CDFA ¹¹ /USDA	Ceratitis capitata	140	47	Husman 521 ² (2 units) (ISOMEDIX)	Cs-137
USA (Hawaii) ARS/USDA ¹²	Ceratitis capitata	120	24	Gammacell® 220 ² (NORDION)	Co-60
USA (Texas)	Anastrepha ludens	70	38	Husman 521 ² (ISOMEDIX)	Cs-137

X-ray irradiators for SIT?

- Due to concerns about radioisotopes, X-ray irradiators are being considered
- Recent paper* showed equivalent effectiveness of RS-2400 from Rad Source for SIT
- However low energy (150 kV) limits penetration and throughput
- Not ideal for SIT environment
 - Reports of high maintenance cost, frequent downtime as high-power X-ray tubes need to be replaced often
 - High flow DI chilled water source required
 - Stable electrical power required
 - Limited range of temperature/humidity

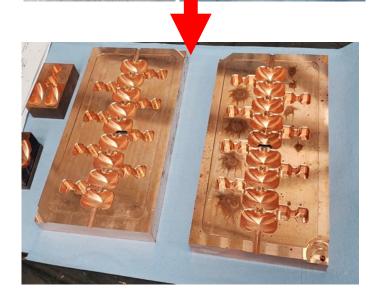


^{*}T. Mastrangelo et al., A New Generation of X ray Irradiators for Insect Sterilization, Journal of Economic Entomology, Vol. 103, Issue 1, p. 85-94. (2010)

Linac X-ray irradiator for SIT

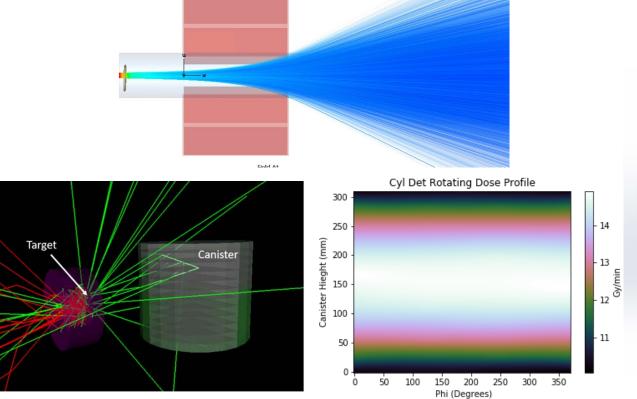
- Self-contained irradiator for sterile insect technique, research, etc.
- Replaces Cs-137 with 3 MV bremsstrahlung from a linac
- High dose rate can be achieved with modest beam currents (~100 μA)
 - Inexpensive, medical/radiography-class linac
- 15 Gy/min, 1.3 DUR in 36 cm diameter X 30 cm tall canister
- For 100 Gy irradiation, throughput for SIT (0.46 g/cm³) is 126 kg/hour

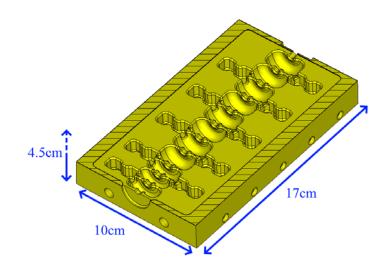
Parameter	Value
Electron Energy	3 MeV
Average Current	100 μΑ
Dose Rate at canister center	15 Gy/min
Dose Uniformity Ratio	1.3
CanisterSize	30 L (18 cm radius X 30 cm tall)
Irradiator System Size	125 cm long x 110 cm tall x 75 cm deep
Irradiator System Weight	5,000 kg
Electrical Requirement	16 kVA (i.e. 400 VAC 20 A 3Ø or 220 VAC 70 A 1Ø)
Room Temperature/Humidity	0° – 40° C, 0% – 100% humidity
Price Target	US\$ 350,000

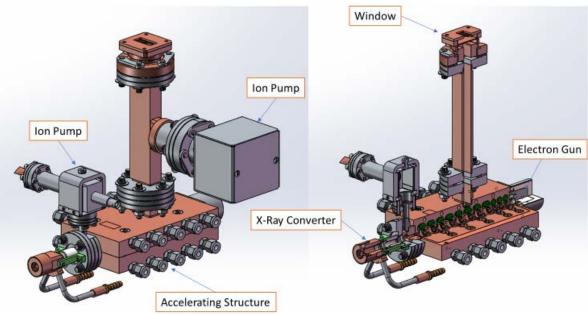

"Split" linac concept

- Linacs are conventionally made from many copper "cells" that are stacked and brazed together
 - Requires precision machining of dozens of parts
 - Brazing introduces additional errors, requires tuning
 - Brazing anneals copper, increasing breakdown rate at high gradients
- Recently, the "split" linac concept has come into vogue
 - Only two parts need to be machined
 - Separates the hermetic joint from the RF surfaces
 - Allows other bonding techniques (e.g. welding, knife-edges)
 - Precision machining can then eliminate need for tuning

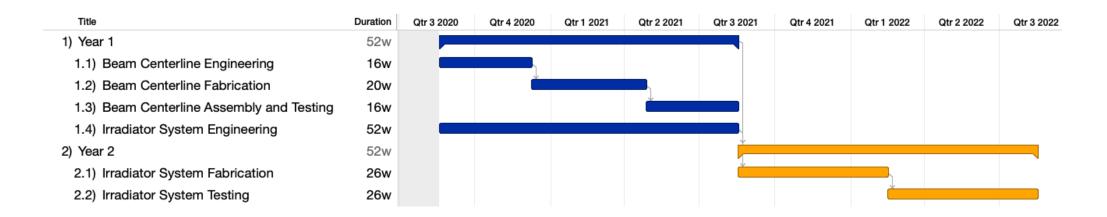
	SCL	S-SCL
Setup/operator time per part	1.5 hours	1.5 hours
Machine time per part	8 hours	20 hours
# of parts	38	2
Total Setup/operator time	57 hours	3 hours
Total machine time	304 hours	40 hours
Setup/operator rate	200	200
Cost of Setup/operator time	\$11,400	\$600
Machine rate	10	10
Cost of machine time	\$3,040	\$400
Total machining cost	\$14,440	\$1,000





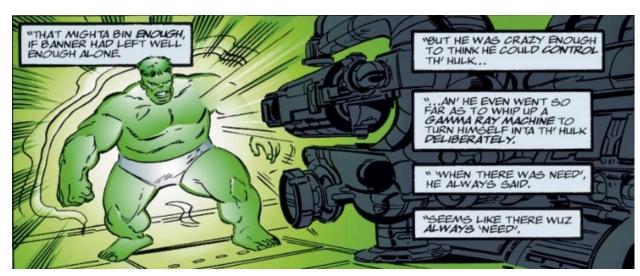

Results so far

- Linac RF design and beam dynamics optimized
- Defocusing system designed to increase beam uniformity
- Shielding simulated with Monte-Carlo (Geant4)
- Linac and system engineering



Next steps

- Complete the engineering of the system, generate manufacturing prints and work instructions
- Fabricate the beam centerline
- Test the beam centerline on a test stand, demonstrating 3 MeV energy and 15 Gy/min
- Fabricate the complete irradiator system, including shielding
- Integrate and demonstrate the complete system, showing 15 Gy/min and < 1.3 DUR in 30 L canister
- Reach goal: deliver prototype to IAEA

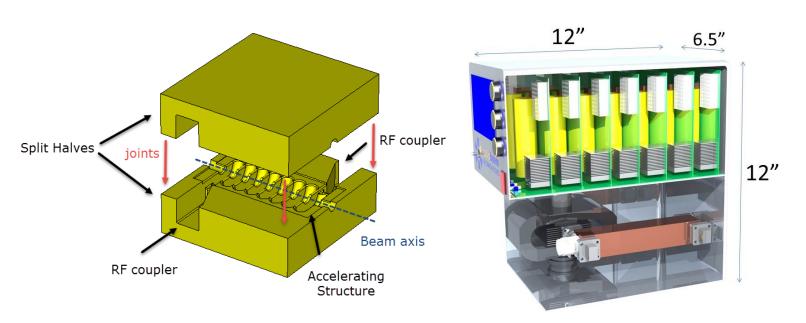


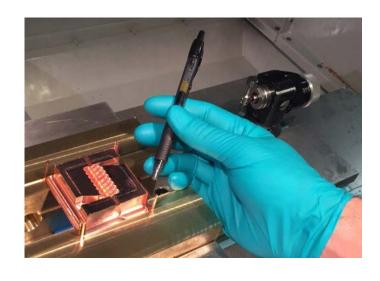
Portable X-Ray source - motivation

- Radioisotopes are commonly used for field radiography
 - Oil and gas industry, power plants, etc.
 - Also useful for DOE office of emergency response
- But frequent accidents from failure to retract source
- Risk for diversion
- An electronic source would reduce accidents, eliminate diversion threat

Isotope	Half life	Avg Energy	Steel range
Yb-169	32 days	145 keV	6-20 mm
Se-75	120 days	217 keV	10-40 mm
Ir-192	74 days	380 keV	20-90 mm
Co-60	5.3 years	1.25 MeV	40-200 mm

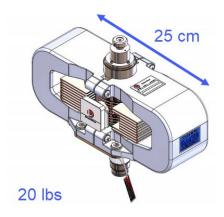
Cartoon gamma projector


Real gamma projector

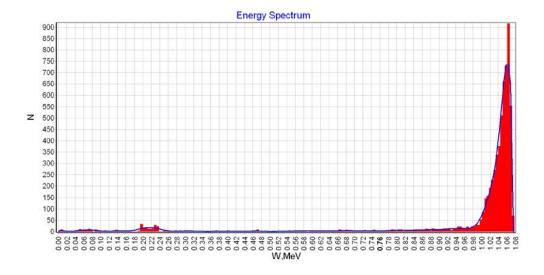

21

Technical approach

- 1 MeV, compact linac to replace Ir-192
 - < 50 lb, > 1 cGy/min @ 1 m
- High frequency Ku-band linac reduces size, power
- Low-power avoids need for water cooling
- "Split linac" approach to reduce manufacturing cost
- Compact, lightweight Marx modulator
- Enable operation from battery



22


Next steps

- Select commercially available magnetron and other components to base the linac design on.
 - Purchased, arriving early next year
- Design and optimize the linac structure through RF numerical simulations to achieve the required energy and current, and to minimize size and cost.
 - Completed; 60 mA peak current at 1 MeV
- Procure RF components and fabricate RF structure for high power tests
 - In progress
- If possible, try to run beam through the structure
- Prepare for Phase II
 - Compact modulator development
 - Better electron gun
 - System engineering

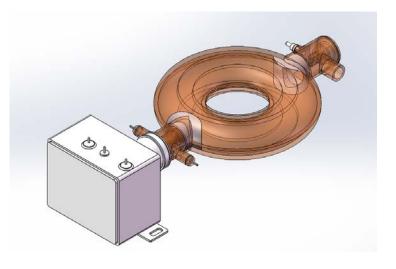
Compact, improved betatron X-ray source

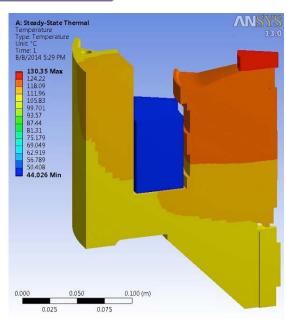
- Betatrons are used for NDT, including for DOE office of emergency response
- They are commercially available only from a manufacturer in Russia (Foton/Tomsk)
 - Concerns about supply chain security
- There is also potential room for improvements in quality, performance and size

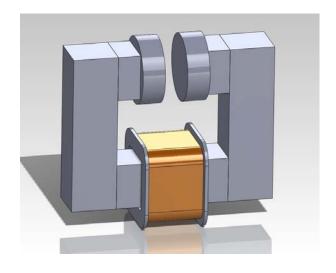
JME/Foton Betatron

Prior work

- RadiaBeam built a 9 MeV betatron radiator (magnet) in 2016 for commercial customer (cargo inspection)
 - Tested successfully (15 cGy/min)
- Continued development on manufacturing process, tube and power supply since then
- Initial engineering performed on 6 MeV version




Next steps



- Phase I SBIR started 7/2020
 - Select magnetic material, perform magnetic and thermal simulations
 - Build+test mockup magnet to verify simulations, develop lamination assembly process
 - Design vacuum chamber, explore improvements
 - Design power supply
- Phase II: build and test complete prototype (2021 2023)

Conclusion

- RadiaBeam specializes in developing specialized accelerators for research, industrial and medical applications
- Currently developing compact high-energy X-ray sources as alternatives to radioisotopes such as Ir-192, Cs-137 and Co-60
- R&D program helped us develop our commercial products
- Accelerator development is challenging, time-consuming and expensive
 - If SBIR is the only funding mechanism available, max budget should be increased to \$2 million
- Unlikely that accelerator-based alternatives will match price of radioisotopes, at least in near term
 - Some incentives should be provided for users to switch
- Thank you!

