

Update on the Office of Radiological Security Alternative Technology Program

February 25, 2021

Lance Garrison, PhD.
Office of Radiological Security
U.S. National Nuclear Security Administration

Office of Radiological Security

Enhance global security by preventing high-activity radioactive materials from being used in acts of terrorism.

U.S. Political Foundation

National Academy of Sciences Recommendation (2008)

 ...the U.S. Government should adopt policies that provide incentives (market, regulatory, or certification) to facilitate the introduction of replacements...

Task Force on Radiation Source Protection and Security (2010, 2014, 2018)

- Independent experts from 14 Federal Agencies, and one State organization
- Chaired by the NRC
- 2010, 2014, & 2018 report recommendations: U.S. Government (a) incentivize alternatives and (b) lead by example

ORS Reduce Strategy

The ORS **REDUCE** Strategy:

- Supports the adoption and development of non-radioisotopic devices to achieve permanent risk reduction by reducing the footprint of risk-significant radiological materials
- Alternative technologies are commercially available for most applications of highactivity radioactive sources

ORS Reduce (Alternative Technology) Strategy

What are "Alternative Technologies"

Technologies which do not contain radioactive materials that perform an equivalent (or better) function as a comparable device

Alternative technologies may emit ionizing radiation, like **X-ray irradiators**, or they may not, like **UV pathogen reduction systems**

Application Examples

- Blood Irradiation
- Research Irradiation
- Sterile Insect Technique
- Food/Phytosanitary Irradiation
- Radiotherapy
- Medical Device Sterilization
- Plastic polymerization

Alternative Technology Examples

- Self-shielded X-ray Irradiators (generators)
- Industrial E-Beam & X-ray Conversion
- Linear Accelerators (LINAC)
- UV Pathogen Reduction
- Neutron Generators

New applications & technologies yet to emerge...

ORS Device Replacements: U.S.

Cesium Irradiator Replacement Project

A voluntary initiative offering financial incentives to U.S. licensees who choose to replace Cs-137 self-shielded irradiators with alternative technologies.

Sites Receive:

- Removal of the Cs-137 device through the Off-Site Source Recovery Project (OSRP)
- A financial incentive toward the purchase price of an X-ray machine (typically 50%), paid as a reimbursement

Initiative	Irradiator Application	Irradiators to be Replaced
University of California	Blood & research	90%
New York City	Blood & Research	75%
Atlanta	Blood & Research	66%
Vitalant	Blood	100%

Progress to Date

- 135 162 irradiators replaced
- **30% 40%** of the U.S. inventory currently being replaced

Research, Studies, and New Ideas

- Collaboration with NNSA Office of Nonproliferation R&D
 - Small Business Innovative Research (SBIR)
 - DOE Labs, universities
- Technology research comparison studies
 - Medical product materials sterilization
 - Biological research
 - Sterile Insect Technique
- Policy & industry landscape studies
 - Cost studies, Implementation feasibility
- Technology demonstration Projects
 - Flat panel X-ray source
 - Superconducting LINAC for industrial sterilization
 - Support for radiotherapy LINAC at the IAEA

SBIR Example: Niowave Linac

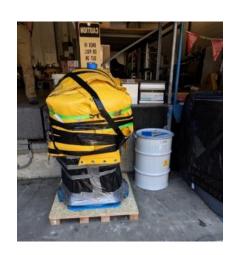
- Superconducting linear accelerator to provide X-ray irradiation for industrial sterilization
- Completed Phase 1 and Phase 2 SBIR projects with the Office of Defense Nuclear Nonproliferation Research & Development
- ORS funded a Phase 3 SBIR in 2016 2017
- Concluded with a full-scale system demonstration

University of Washington Cs Contamination Incident

- During the removal of a Cs irradiator in May 2019 the source was accidentally breached
 - Released approximately 1 Curie of Cs
- 1 building and 13 people contaminated (11-55 millirem)
- Estimated cost for response, recovery remediation, and reconstruction: greater than \$100,000,000

Operational Phases

Phase 1 – Event Response (complete)


Phase 2 – Source Recovery (complete)

Phase 3 – Remediation (almost complete)

Phase 4 – Reconstruction (ongoing)

Ongoing Operations (Phases 3 and 4)

- Remediation complete, with free release of the building expected in April
- Reconstruction ongoing and expected to continue through summer 2021
- Goal: reoccupation in fall 2021

