

December 8, 2020

Michael Miller, Ph.D.

Director, Nuclear Nonproliferation

Nonproliferation Considerations of Advanced Fuel Cycles

Merits and Viability of Different Nuclear Fuel Cycles and Technology Options and Waste Aspects of Advanced Nuclear Reactors

Outline

- Nonproliferation dimensions of the current nuclear fuel cycle
- Advanced fuel cycle and reactor options nonproliferation impacts
- R&D to support advanced fuel cycle and reactor deployment

Nonproliferation Dimensions of the Current Fuel Cycle

- The global nuclear energy enterprise is primarily based on a once-through fuel cycle (no reprocessing), using UOX fuel with U-235 <5% enriched, and large ~1GWe LWR power plants
 - Supporting infrastructure includes uranium mining & milling, conversion & enrichment, fuel fabrication
 - U.S. has mining & milling, conversion, fuel fabrication capacity, commercial enrichment, 95% of uranium imported
 - Safeguards and security entails item accounting at reactors and bulk accounting at enrichment and fuel fabrication
- Some countries have implemented advanced fuel cycles and reactors (e.g., gas or Na cooled) and alternate fuels (e.g., TRISO, MOX) and much R&D has been done over many decades
 - Safeguards are in place by IAEA, often a challenge to resourcees
 - Goal quantities and timeliness may change (e.g., MOX fuel)
 - U.S. is not recycling commercial SNF
 - U.S. experience in advanced fuel cycle and reactor safeguards and security has been largely in support of the international community

Safeguards and Security Requirements Vary

- US NRC regulates commercial nuclear enterprise
 - 10 CFR 73 Physical Protection
 - 10 CFR 74 MC&A
 - 10 CFR 110 Export Control
- DOE regulates their own facilities
 - DOE Order 473.3 Physical Security
 - DOE Order 474.2 MC&A
 - 10 CFR 810 Export Control
- IAEA verifies compliance with Article 3.1 of the NPT
 - INFCIRC 153 Safeguards Agreements
 - INFCIRC 225 Nuclear Security
 - INFCIRC 540 Additional Protocol
 - Other conventions regarding nuclear materials
- Security requirements, goal quantities and timeliness vary somewhat

It is important to consider safeguards and security in a domestic and international context for export and U.S. nonproliferation purposes

Advanced Reactor Concepts

- Numerous AR/SMR/micro designs worldwide (over 70 in the IAEA advanced reactor information system alone)
- Water Cooled
- Gas Cooled
- Liquid Metal Cooled
- Molten Salt Cooled
- Small Modular Designs
- Not all designs have mature safeguards and security concepts and approaches

https://aris.iaea.org

From a technical perspective, all can be secured and safeguarded, some are very challenging, and would require significant resources and/or advances derived from research and development

Departure From Current Fuel Cycle

- Fuel characteristics
 - Enrichments: HALEU, HEU
 - Plutonium, Thorium
 - Composition: oxides, metal, molten salts (U, F, Li, Be)
 - Forms: assemblies, pebble bed/TRISO, liquid
- Coolant/Moderator
 - HW, sodium, lead, graphite, helium, etc.
- Overall characteristics can include
 - Inherent or passive safety features
 - Simplified or modular designs
 - Lower power
 - Enhanced load-following capabilities
 - Thermal and fast neutron spectrums
 - Closed fuel cycle
 - Less frequent/continuous refueling

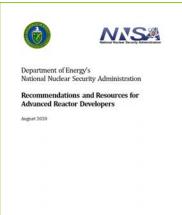
Categories of Differences (Increasing Departure)

- Pu/U-233 have lower significant quantity masses and security category 1 thresholds
- Pebble bed and liquid metal cooled reactors present challenges but some experience
- Molten salt systems are biggest challenge (least experience)

Needs to Support Advanced Reactor Deployment

- Current focus is micro reactor, pebble bed, molten salt, and liquid cooled reactors and associated fuel cycle facilities
- Regulatory challenges, identification of gaps, and providing R&D to support vendors in meeting regulatory requirements
- Developing optimized physical protection systems for advanced and microreactor designs
- Examining unique materials accountancy challenges for designs that use non-traditional fuel assemblies
- A key paradigm is safeguards by design and security by design, where safeguards and security aspects are addressed early in the design process rather than applied after the fact
- Integration of process monitoring data, security data, and other information, including cyber to develop knowledge of facility status in near real time
- Application of data science, AI/ML, digital twins
- Advanced sensors

Needs Addressed Under Multiple Initiatives


DOE/NNSA

- Advanced Reactor Safeguards (ARS)
- Material Protection, Accounting and Control Technologies (MPACT)
- Advanced Reactor Development Program (ARDP)
- Gateway for Accelerated Innovation in Nuclear (GAIN)
- Nuclear Reactor Innovation Center (NRIC)
- U.S. Nuclear Nexus (NNSA engagement with industry)
- Safeguards & Security by Design Working Groups (SSBD-WG)
- Safeguards Concepts, Approaches, and Technology Development
- Vulnerability Analysis, Risk-Informed Security Approaches
- NRC's AR Working Group
- IAEA
 - International Project on Innovative Nuclear Reactors & Fuel Cycles
 - CRP SMR Economic Appraisal project
 - SBD-WG
- NGOs: NEI, NTI, Third Way, WINS

NNSA & IAEA document to designers of advanced reactors

DOE/NNSA

 Over a dozen Guidance Documents, Good Practices Studies, and Safeguardability Assessments

IAEA

- Several Nuclear Energy Services Series Guidance Documents published
 - Safeguards by Design for Fuel Cycle
 - Nuclear Security

Questions?