

*United States
Department of Energy
National Nuclear Security Administration
International Nuclear Security*

**Advanced Reactor Nuclear Security
Project**

Katherine Holt
U.S. DOE/NNSA (NA-211)

May 18, 2021

Table of Contents

- Introduction to the Office of International Nuclear Security (NA-211)
- Security considerations for advanced reactors
- The Advanced Reactor Nuclear Security Project
 - Improve security of future US exports
 - Support nuclear security infrastructure development
 - Upholding the global nuclear security regime

INS
International Nuclear Security

**Nuclear catastrophe
is an unacceptable
risk**

*International collaboration
is imperative*

Theft followed by fabrication and use of a threat device can create catastrophic loss

Sabotage can lead to loss of life, deep economic damage, and societal disruption

Our Vision

A world in which effective security prevents nuclear theft, sabotage, and terrorism

Our Mission

Lead U.S. international efforts to prevent theft and sabotage of nuclear materials and facilities worldwide

STRATEGY

Lead and Partner

Global nuclear security norms and standards address existing and emerging threats through U.S. leadership and partnership

Secure

Partner countries have the capabilities to prevent sabotage or the illicit use of nuclear materials through effective nuclear security practices, systems, and infrastructure

Innovate

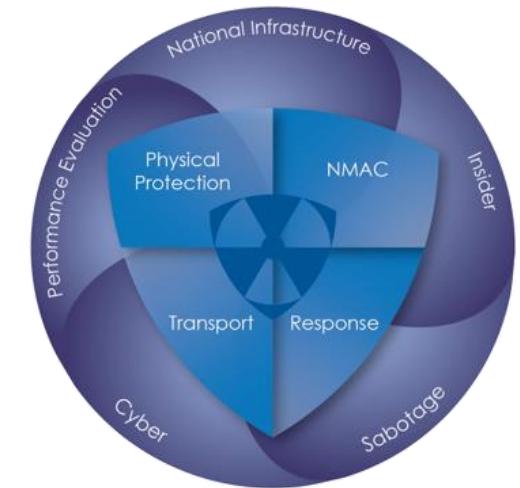
Novel and innovative approaches address current, future, and emerging nuclear security threats, risks, and mitigation strategies

IMPLEMENTATION

Address **4** Risk Areas

Weapons-useable Nuclear Materials

Reactors



Nuclear Fuel Cycle Facilities

Materials in Transit

Partner with **9** countries in **9** Nuclear Security Functional Areas

THEFT AND SABOTAGE

Adversary interest in nuclear power plants

(2014) Turbine sabotage took Doel 4 reactor offline for months – insider suspected

(2016) Suspected terrorists in the Brussels airports and metro attacks may have considered attacking nuclear plant

Advanced reactors present particular security challenges

- New **markets** that do not have experience with security and nonproliferation (e.g., Regulations)
- New **fuel types** require further assessment to determine whether material characteristics change theft & sabotage risk profiles
- New **reactor designs**:
 - Many advanced reactor designs do not have mature approaches for Nuclear Material Accounting and Control (NMAC)
 - Potential theft of the entire reactor (for small, transportable reactors)
- New **operational environments**: remote locations, greater reliance on offsite response, new threat environments
- New **target sets**: Passive safety systems

Policy Drivers:

- American leadership in nuclear technology + nonproliferation standards
- Enabling peaceful uses
- Meeting climate change goals

INS AR Nuclear Security Project

Building relationships with U.S. nuclear energy industry vendors & embarking countries on nuclear security topics to:

- Improve security of future US exports
- Support nuclear security regulatory and operational capacity in Newcomer countries
- Advancing the global nuclear security regime through IAEA collaboration

INS approach to supporting the secure deployment of advanced reactors

Objectives

Secure Exports

Responsible Newcomers

Strong Nuclear Security Regime

Implementation Approach

Develop security analysis and tools + security by design technical partnerships with U.S. vendors

Work bilaterally to support strong nuclear security frameworks in future markets

Collaborate with the IAEA on technology inclusive guidance and infrastructure development

Secure Exports:

Enhance the security of future exports through analysis, tools and technical partnerships

Studies and tools to understand new risks and mitigation approaches

- Security economics
- Advanced reactor target set analysis
- DEPO methodology

Outreach

- NGO events
- Webinars (GAIN/NEXUS websites)

Security by design technical partnerships with U.S. vendors

- RFI on safeguards and security by design projects (planned)
- Lab-lead agreements (NDA or CRADA)

AR Security Technical Studies & Tools

Security Economics

A tool that vendors and utilities can use to perform a cost-benefit analysis for design features which have the purpose of reducing O&M costs related to nuclear security

Advanced Reactor Target Sets

An approach which US-based companies can identify and evaluate advanced reactor theft/sabotage targets and vulnerabilities for a given protection strategy

Design and Evaluation Process Outline (DEPO) online training

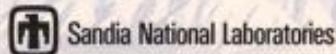
Understanding of the DEPO methodology used to define, design, and evaluate physical protection systems for nuclear facilities

<https://nstc.sandia.gov/training/smr-depo-course>

SANDIA REPORT

SAND2013-0038
Unlimited Release
Printed January 2013

Security-by-Design Handbook

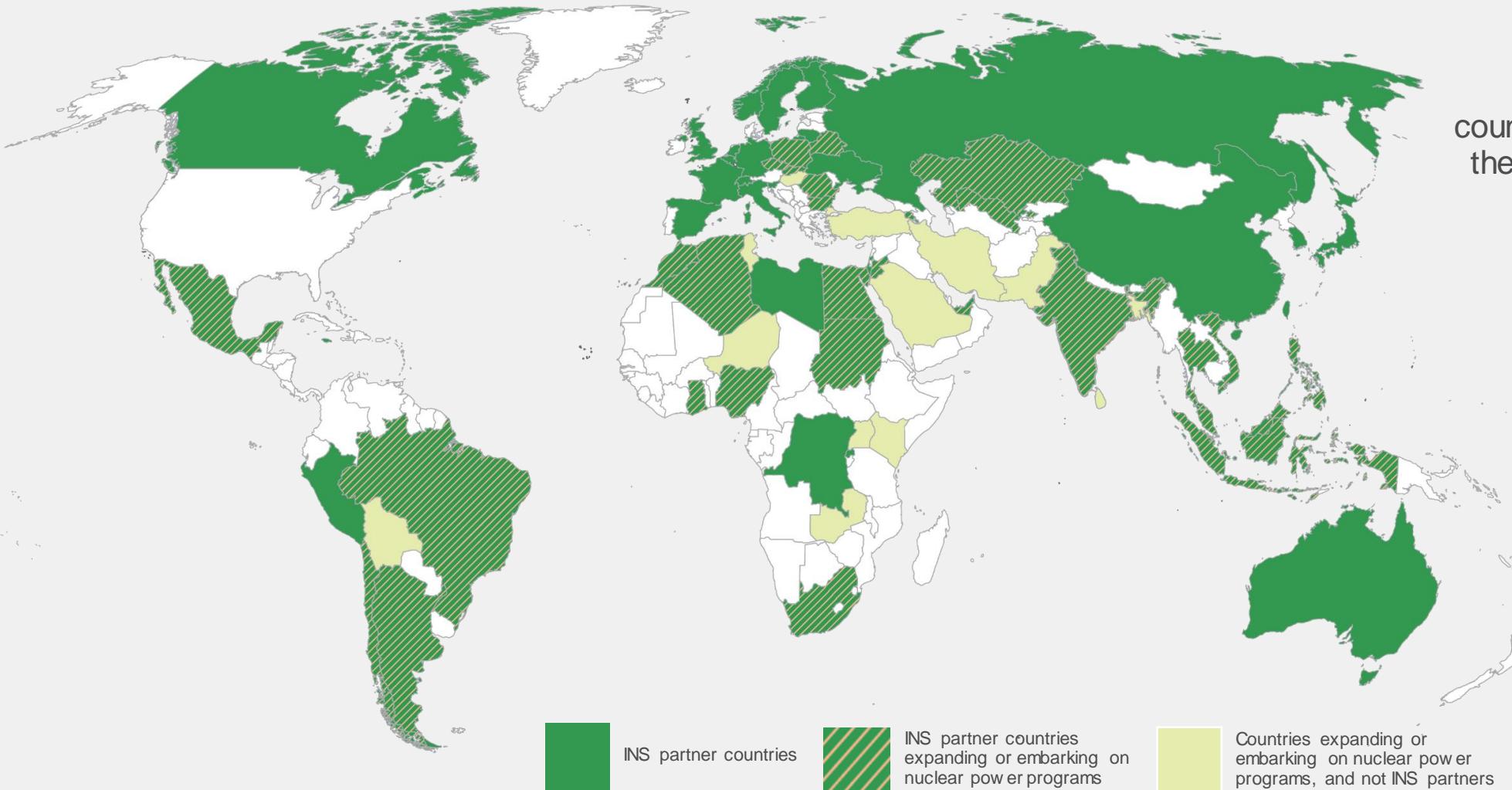

Mark K. Snell, Calvin D. Jaeger, Sabina E. Jordan, and Carol Schaeffer
Sandia National Laboratories, Albuquerque, New Mexico, USA

Koji Tamura, Kazuya Ochiai, and Toru Iida
Japan Atomic Energy Agency, Tokai-mura, Ibaraki, Japan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.


Technical Partnership on “Security-by-Design” (SeBD)

Security-by-Design (SeBD) refers to efforts to incorporate protection-related elements *early, frequently, & continuously* throughout the engineering process

- Includes protection-related thinking **earlier** into the design process
- Infuses protection-related decisions **frequently** throughout the engineering lifecycle
- Incorporates protection-related metrics **continuously** in evaluation efforts
- Emphasizes **efficiency** (e.g., same/better performance @ lower cost)
- Based on systems engineering principles
- **Better aligns** security elements with traditional emphasis points

The demand for nuclear power is growing

Defining “nuclear newcomers”

“Embarking Countries”

countries that are embarking on the introduction of new nuclear power programs for the first time

“Expanding Countries”

countries are considering or actively undertaking an expansion of their nuclear power programs, many of them after an extended introductory period, including traditional builds and new advanced reactor technologies

Responsible Newcomers:

Support nuclear
security infrastructure
development
in newcomer
countries

**INS's nuclear security focus
for embarking/expanding
countries is tailored by
phase of development
(commitment; contracting;
commissioning)**

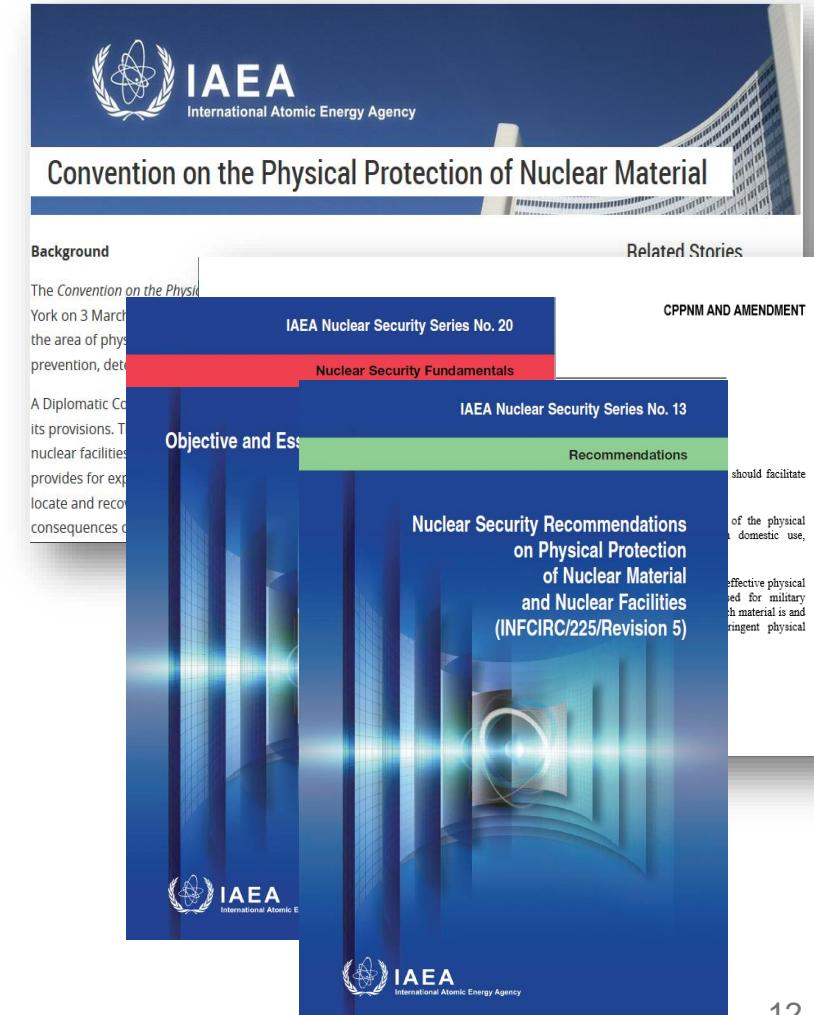
IAEA Milestones Approach to Nuclear Power Infrastructure Development (IAEA Nuclear Energy Series NG-G-3.1 Rev.1)

Phase 1 Commitment

- Regulatory development
- Threat assessments

Phase 2 Contracting

- PPS design
- Security plan
- Trustworthiness


Phase 3 Commissioning

- Testing and validation
- Insider threat mitigation
- Cyber security

Strong Security Regime:

Maintain and adapt the global nuclear security regime for AR Technology Considerations & Newcomers

- **Guidance:** Actively involved in developing future good practices with the IAEA to include SeBD for SMR/ARs and other revisions to security guidance including Vital Area Identification, Cybersecurity for SMR's, and others.
- **Missions:** Collaborate with the IAEA on nuclear security aspects of infrastructure missions support to embarking and expanding countries.

Thank you!

Comments/Questions?