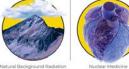

Cancer Risks from Low-dose Ionizing Radiation: The JNCI Monograph

Amy Berrington, DPhil Branch Chief (Radiation Epidemiology Branch, NCI) Mary Schubauer-Berigan, PhD Acting Group Head (Monographs Programme, IARC)



academic.oup.com/incimono

2020 NUMBER 56

Amy Berrington de Gonzalez, DPhil

OXFORD

GUEST EDITORS:

Amy Berrington de Gonzalez, DPhil David Pawel, PhD

Contents

•		_1	
A	\mathbf{r}	CI	

Epidemiological Studies of Low-Dose Ionizing Radiation and Cancer: Rationale and Framework for the Monograph and Overview of Eligible Studies Amy Berrington de Gonzalez, Robert D. Daniels, Elisabeth Cardis, Harry M. Cullings, Ethel Gilbert, Michael Hauptmann, Gerald Kendall, Dominique Laurier, Martha Linet, Mark P. Little, Jay H. Lubin, Dale L. Preston, David B. Richardson, Daniel Stram, Isabelle Thierry-Chef, Strengths and Weaknesses of Dosimetry Used in Studies of Low-Dose Radiation Exposure and Cancer Robert D. Daniels, Gerald M. Kendall, Isabelle Thierry-Chef, Martha S. Linet, Evaluation of Confounding and Selection Bias in Epidemiological Studies of Populations Exposed to Low-Dose, High-Energy Photon Radiation Mary K. Schubauer-Berigan, Amy Berrington de Gonzalez, Elisabeth Cardis, Dominique Laurier, Outcome Assessment in Epidemiological Studies of Low-Dose Radiation Exposure and Cancer Risks: Sources, Level of Ascertainment, and Misclassification Issues in Interpreting Epidemiologic Studies of Populations Exposed to Low-Dose, High-Energy Photon Radiation Epidemiological Studies of Low-Dose Ionizing Radiation and Cancer: Summary Bias Assessment and Meta-Analysis Michael Hauptmann, Robert D. Daniels, Elisabeth Cardis, Harry M. Cullings, Gerald Kendall, Dominique Laurier, Martha S. Linet, Mark P. Little, Jay H. Lubin, Dale L. Preston, David B. Richardson, Daniel O. Stram, Isabelle Thierry-Chef, Mary K. Schubauer-Bengan,

International Multi-disciplinary Study Team

Epidemiologists

- Amy Berrington (NCI)
- Elisabeth Cardis (ISGlobal)
- Dominique Laurier (IRSN)
- Martha Linet (NCI)
- David Richardson (UNC)
- Mary Schubauer-Berigan (IARC)

Statisticians

- Ethel Gilbert (NCI)
- Michael Hauptmann (MHB Fontane)
- Mark Little (NCI)
- Jay Lubin (NCI)
- Dale Preston (Hirosoft)
- Dan Stram (USC)
- David Pawel (EPA) (Guest Editor)

Dosimetrists

- Harry Cullings (RERF)
- Doug Daniels (NIOSH)
- Gerry Kendall (Oxford)
- Isabelle Thierry-Chef (ISGlobal)

NAS BEIR VII 2006 report on low-dose radiation and cancer....."the available scientific evidence is consistent with a linear dose-response relationship between ionizing radiation and the development of cancer in humans.... the smallest dose has the potential to cause a small increase in risk to humans".

Pooled Analyses

Highly Susceptible Populations

New Era

of

Low-Dose Studies

Electronic Record Linkage

New Exposures

Aims of the Review

Aim 1

 Summarize findings of epidemiological studies published since NAS BEIR VII

Aim 2

 Systematically assess impact of potential biases & conduct meta-analysis

Study Eligibility

Cancer risks in humans published 2006-17

Mean ionizing radiation dose <100mGy

Risk estimates for dose-response

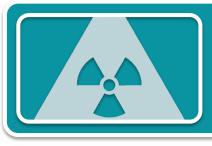
7

Environmental Exposures

- 8 eligible studies
- 4 natural background & 4 accidental

Medical Exposures

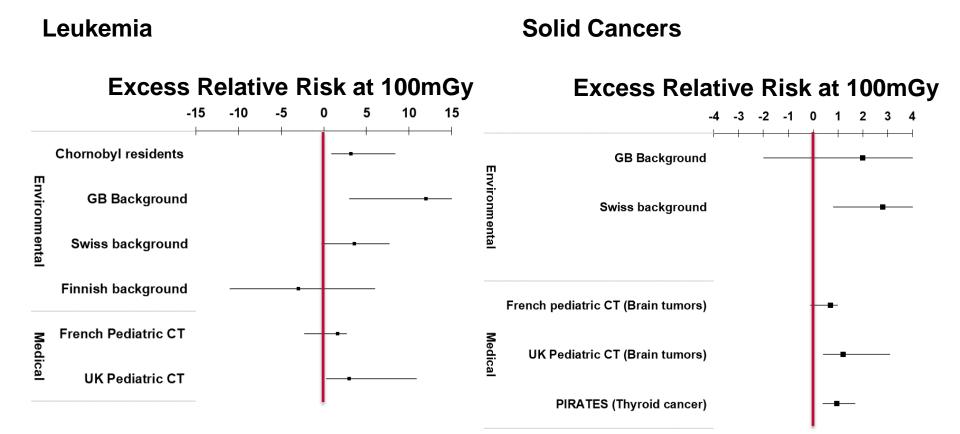
- 4 eligible studies
- 3 pediatric imaging/therapy & 1 adult cardiac imaging

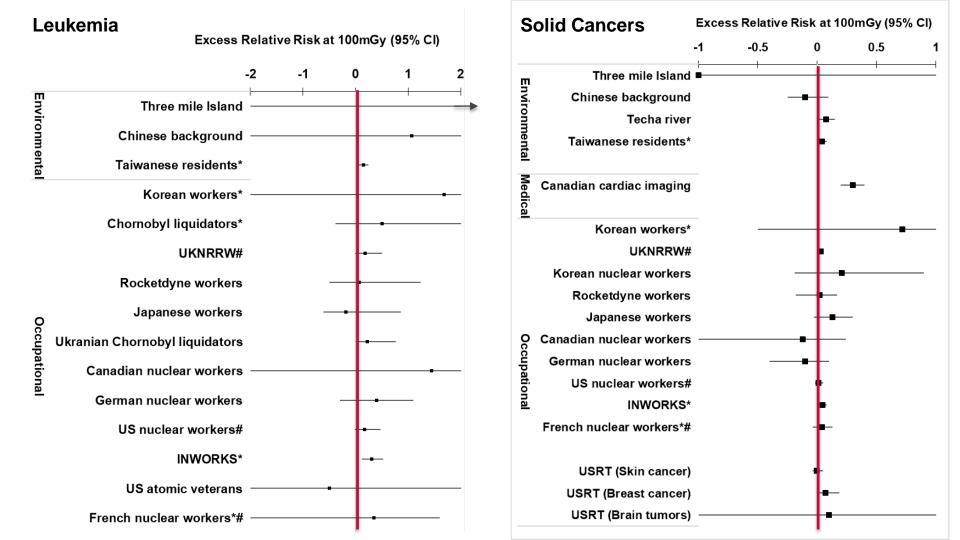

Occupational Exposures

- 14 eligible studies
- 11 nuclear workers, 1 medical & 2 clean-up workers

Summary Study Characteristics

Primary outcomes: 91,000 solid cancers & 13,000 leukemias




Mean dose range: 0.1mSv (Three Mile Island) to 82mSv (Chernobyl liquidators)

Most study participants exposed to <100mSv (21 studies <10% had doses >100mSv)

Cancer Risk Following Low-Dose Exposure in Childhood

Ineligible Studies: Failed on 1 Criterion (n=14)

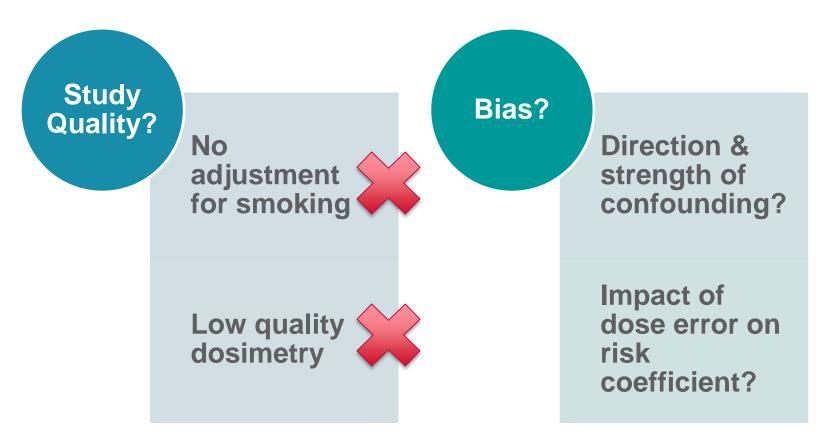
Population	Author	Year	Reason for exclusion	Finding
US scoliosis (thyroid)	Ronckers	2008	Mean dose = 120mGy	+ (ns)
Kerala background	Nair	2009	Mean dose = 161mGy	- (ns)
Chornobyl clean-up	Kesminiene	2012	Mean dose =100-200mGy	+ (s)
Techa river (leukemia)	Krestinina	2013	Mean dose = 410mGy	+ (s)
Mayak workers	Solkinokov	2015	Mean dose = 354mGy	+ (s)
Chornobyl clean-up	Kashcheev	2015	Mean dose = 132mGy	+ (s)
Chinese medical workers	Sun	2016	Mean badge dose = 250mGy	+ (s)
US Shipyard workers	Matanoski	2008	Categorical risk estimates	+ (ns)
Australian nuclear test	Gun	2008	Categorical risk estimates	+/- (ns)
French biology researchers	Guseva	2008	Categorical risk estimates	+ (s)
Finnish reindeer herders	Kurttio	2010	Categorical risk estimates	+ (s)
Childhood X-rays	Hammer	2009	Categorical risk estimates	+/- (ns)
French background	Demoury	2017	Risk for dose rate not cumulative dose	+/- (ns)
German background	Spix	2017	Risk for dose rate not cumulative dose	+ (ns)

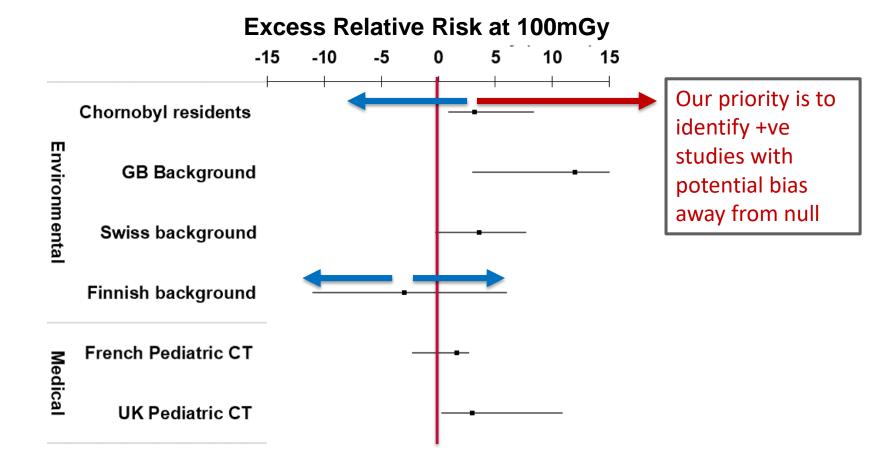
s – statistically significant (p<0.05) ns – not statistically significant (p≥0.05) ₁₂

Summary Study Findings

Solid cancers: 16 of 22 studies positive ERR

Leukemia: 17 of 20 studies positive ERR


Ineligible (1 criterion): 10 of 14 studies positive


Bias Assessment Framework

Assess whether there is Assess the likely If possible, estimate the direction of the bias from magnitude of the bias. potential bias from each of the following sources. each source. • Dose error? • Towards null? • Is bias large enough to explain the result (ie • Confounding? Away from null?* bias correction would Selection bias? Uncertain?* move ERR/Gy to 0)? Outcome ascertainment?

Berrington et al (JNCI Monograph 2020)

Distinctiveness of Bias Assessment Approach

Potential Biases...Common misconceptions

No unexposed comparison group

 Exposed vs unexposed more likely to be biased (eg confounding, selection bias) than a dose-response in exposed subjects

Retrospective cohort study

 Equally valid as a prospective study if using passive data collection (no recall bias)

Dr Schubauer-Berigan

Bias impact assessment

Assess whether there is potential bias from each of the following sources.

- Dose error?
- Confounding?
- Selection bias?
- Outcome ascertainment?

Bias impact assessment: radiation dose error

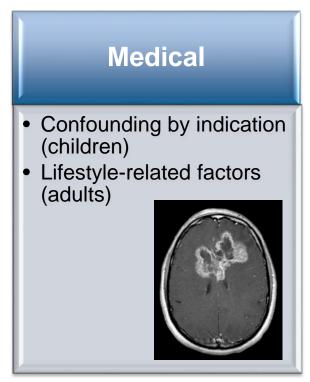
Dosimetry quality assessed for each study, emphasizing potential to lead to spurious dose-response findings

18/24 studies had minimal dosimetry error, which would not be expected to cause substantial bias

- Bias toward null association from non-differential dose error likely for most studies
- 3 case-control studies potentially biased away from null

Bias impact assessment: confounding & selection bias

For each study, assessed methods used to control for confounding and selection bias in design & analysis


 Identified confounders of concern for environmental, medical, and occupational exposure studies

Evaluated direct and indirect evidence demonstrating likely impact of confounding

Where no data were available, used theoretical worstcase assessment of confounding impact

Confounders of concern by exposure type

Occupational

- Lifestyle-related factors
- Other occupational carcinogens
- Healthy worker effect & healthy worker survivor bias (HWSB)

Direct & indirect evidence of confounding

Environmental

- Lifestyle-related factors
 - Most studies controlled for age, sex, birth cohort
 - Most studies controlled for lifestyle correlates [smoking, education, or socioeconomic status (SES)]
- Some studies adjusted for region of residence and natural background radiation

Medical

- Lifestyle-related factors
- All studies adjusted for age, sex, calendar year
- Confounding by indication
 - Most studies excluded children with predisposing conditions [e.g., cancer susceptibility syndromes (CSS)]

Occupational

- Lifestyle-related factors & other occupational carcinogens
- Most studies adjusted for age, sex, birth cohort & SES
- Healthy worker effect & HWSB
 - Most studies adjusted for employment duration

Direct & indirect evidence of confounding

Environmental

- Bias impact evaluation
 - Little evidence that potential confounders were actually related to radiation dose
 - Minimal impact of adjustment on doseresponse estimates
- Main concern: potential selection bias in 1 study

Medical

- Bias impact evaluation
 - Most known risk factors for brain cancer & leukemia unlikely related to radiation dose
 - CSS generally very rare and were not strongly related to number of CT scans
 - Positive confounding unlikely by SES in studied countries
- Main concern: residual confounding by indication (lack of adjustment in 1 study; incomplete data for 1 study)

Occupational

- Bias impact evaluation
- After adjusting for sex, age, birth cohort & SES, little indirect evidence of smoking confounding (e.g. COPD negatively or not associated with dose)
- Benzene not likely a strong confounder; more potential for asbestos confounding
- Main concern: residual confounding by smoking, asbestos, & HWSB (no adjustment in 3 studies; partial in others)

Bias impact assessment: confounding & selection bias

Worst-case estimation of confounder disparity by dose group that would reduce point estimate to null

This evaluation was done for CSS in CT studies, and for tobacco and asbestos in nuclear worker studies

Example: low-dose radiation in International Nuclear Workers Study (INWORKS)

Bias impact assessment: confounding & selection bias

Assume no radiation-cancer association & calculate distribution of smoking required to explain the dose-response observed for all cancer mortality in INWORKS

- Overall smoking prevalence 50-70%, smoking-related all cancer RR=1.6: calculated smoking prevalences in highest dose categories exceed 100%: smoking differences cannot explain observed radiation risks
- Overall smoking prevalence=30%, a 3-fold difference in smoking prevalence across dose categories would be needed to explain observed radiation risks

Similar findings for asbestos exposure in occupational studies and CSS in medically exposed populations

Bias impact assessment: outcome assessment quality

Main concerns for all-cancers & leukemia excluding CLL

 Loss to follow-up (LTFU), over- or under-ascertainment, outcome misclassification, changing classifications over time, combining heterogeneous cancers that may differ in radiogenicity or latency

Most studies had acceptable outcome assessment quality, but with potential for non-differential misclassification

 Low LTFU; 4 studies had differential ascertainment by dose group; few studies had evidence of differential classification by dose group

X- and y-radiation are known human carcinogens

Sites with "Sufficient" evidence of human carcinogencity

- Oral cavity & digestive: salivary gland, oesophagus, stomach, colon
- Respiratory: lung
- Urinary tract: kidney, urinary bladder
- Other solid cancers: bone, basal cell of the skin, female breast, brain and CNS, thyroid
- Lymphatic & hematopoietic: leukaemia (excluding chronic lymphocytic)
- "In-utero exposure to X-radiation and γradiation causes cancer"

Sites with "Limited" evidence of human carcinogenicity

- Oral cavity & digestive: rectum, liver, pancreas
- Respiratory: --
- Urinary tract: --
- Other solid cancers: ovary, prostate
- Lymphatic & hematopoietic: non-Hodgkin lymphoma, multiple myeloma

Bias impact assessment: analytical issues

Statistical power is low for most studies, if the ERR/Gy estimates from LSS are generalizable

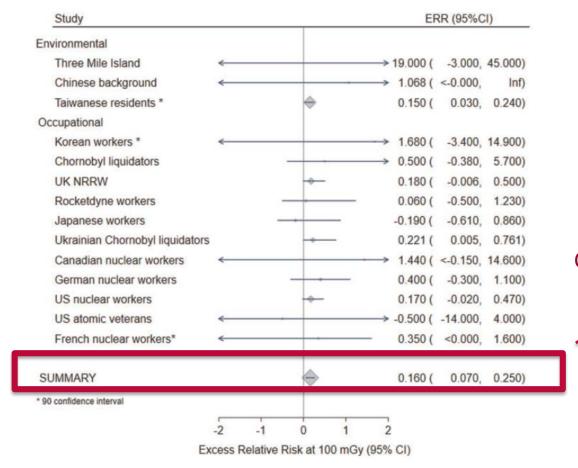
- Adjusting for confounding is important, but over-adjustment should be avoided
- Pooling of compatible studies can help overcome limited power
- Estimates derive from Japanese Life Span Study (LSS)

Bias impact assessment: analytical issues

Dose measurement error impact

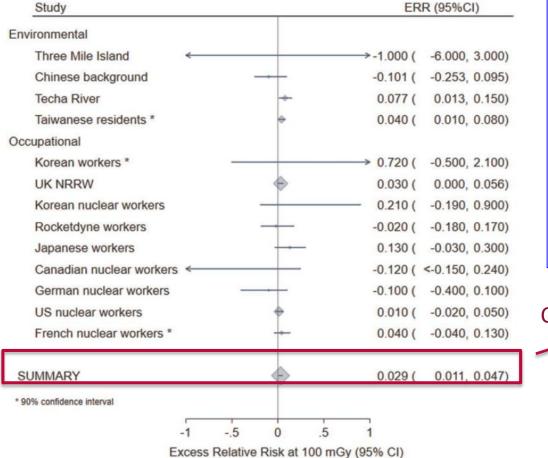
- Most studies had high-quality dosimetry, although varying levels of individualization
- Errors most likely to be non-differential
 - Can further reduce power
 - Can lead to underestimation of risk per unit dose
 - Unlikely to cause spurious dose-response association

Summary: Systematic Bias Assessment for Leukemia


Study	ERR at 100 mGv	(95% CI)	Dose error	Confounding	Outcome misclassification	Could bias adjustment move ERR towards null?
Environmental						
Chernobyl residents	3.2	(0.9 to 8.4)	1	1		Yes. Exclusion of subgroup with potential recall bias reduced risk to null.
Three Mile Island	19	(-3 to 45)	4			<u>No</u> . Adjustment would move ERR away from null.
Chinese background	1.07	(<0 to inf)			\$	Uncertain. Adjustment could move ERR towards or away from null.
GB background	12	(3.0 to 22.0)				
Swiss background	3.6	(-0.3 to 7.7)				
Finnish background	-3	(-11 to 6)				
Taiwanese residents	0.15	(0.03 to 0.24)				
Medical						
French Pediatric CT	1.6	(-2.3 to 2.7)				
UK Pediatric CT	3	(0.3 to 10.9)				
Occupational						
Korean workers	1.68	(-3.4 to 14.9)		4	↑	Uncertain. Adjustment could move ERR towards or away from null.
Chernobyl liquidators 1	0.5	(-0.38 to 5.70)	1			Yes. Adjustment possibly moves ERR to null.
UKNRRW	0.18	(0.02 to 0.44)				-
Rocketdyne workers	0.06	(-0.50 to 1.23)				
Japanese workers	-0.19	(-0.61 to 0.86)		4	V	Yes. Adjustment possibly moves ERR towards null.
Chernobyl liquidators 2	0.22	(0.005 to 0.76)	1			<u>Yes</u> . Adjustment possibly moves ERR towards null.
Canadian workers	1.44	(<-0.15 to 14.6)				
German workers	0.4	(-0.3 to 1.1)		4		<u>No</u> . Adjustment would move ERR away from null.
US nuclear workers	0.17	(-0.02 to 0.47)				
INWORKS	0.3	(0.12 to 0.52)				
US atomic veterans	-0.5	(-14 to 4)				
French workers	0.35	(<0 to 1.6)		↓		No. Adjustment would move ERR away from null.

Leukemia: 17 of 20 studies reported + ERRs

Sign test median ERR=0 rejected (p=0.001)


After exclusion of 5 + studies with potential for bias away from null (p=0.02)

Summary: Leukemia after adulthood exposure (ERR at 100mGy)

Consistent with LSS ERR/100mGy __ 0.08 (0.003-0.19)

Summary: Solid cancers after adulthood exposure

Solid cancers: 16 of 22 studies reported + ERRs

Sign test median ERR=0 rejected (p=0.03)

After exclusion of 4 + studies with potential for bias away from null (p=0.12)

Consistent with LSS ERR/100mGy 0.027 (males)

Overall Summary: Meta-analysis

Table 3. Meta-analysis of excess relative risks (ERR) at 100 mGy for all solid cancers and leukemia

Outcome	No. of studies	ERR at 100 mGy (95% CI)	P	Cochran Q (P)	I^2
Adult solid cancer	14*	0.055 (-0.0027, 0.112)	.03	37.25 (<.001)	0.65
Adult solid cancer excluding the Canadian	13*	0.029 (0.011, 0.047)	<.001	9.89 (.63)	NA
cardiovascular imaging study due to heterogeneity					
Adult leukemia	14†	0.160 (0.070 to 0.250)	<.001	4.12 (.99)	NA
Childhood leukemia	6	2.840 (0.370 to 5.320)	.01	6.40 (.27)	0.22

^{*}Excluding INWORKS and site-specific results from US Radiologic Technologists. †Excluding INWORKS.

Bradford Hill Criteria for Causality

Consistency

Has it been repeatedly observed by different persons, in different places & time?

Biological gradient

Is there a dose-response?

Biological plausibility

Is there a biological mechanism?

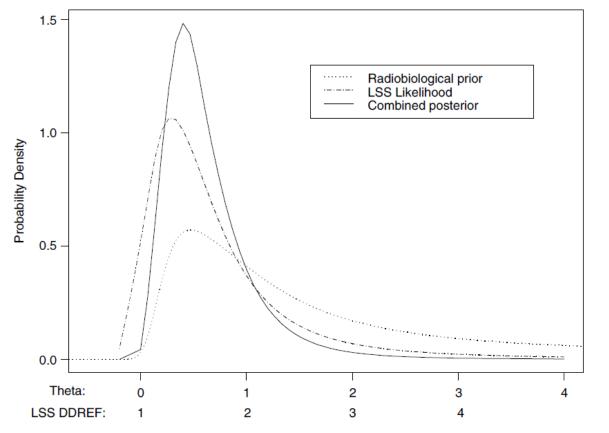
Strength

Strength of the association – although we must not be too ready to dismiss small risks.

Conclusions: systematic review of low-dose radiation epidemiology studies since BEIR VII

Most studies had low potential for bias that would cause spurious positive dose-response

- Non-differential dose error of relatively low magnitude
- Healthy worker survivor bias in occupational studies
- Non-differential outcome misclassification


Results of meta-analyses indicate risk per unit dose that is generally consistent with BEIR VII models

 Leukemia model results suggest that LSS models may underestimate low-dose effects in non-Japanese populations

Implications for dose and dose-rate assumptions

BEIR VII Bayesian analysis of DDREF, 2006

37

Recommendations for Future Work

Quantification of Risk at Low-Doses

- Pooling projects to improve risk estimates
- Eg EPICT, INWORKs

Routine Bias Assessments

- In the original study manuscripts (preferably)
- As part of systematic reviews

Questions?