

Cardiovascular Effects at Low Doses of Radiation: Perspectives from Epidemiology

Mark P Little

Radiation Epidemiology Branch, National Cancer Institute, Bethesda, USA

5th Gilbert W Beebe webinar "After BEIR VI and BEIR VII"

19-20 October 2021

Outline of talk

- Introduction
- □ Some preliminaries meaning of low dose etc
- □ Recent systematic reviews/meta-analyses of circulatory disease in moderate & low-dose epidemiological data
- Some of the larger and more informative circulatory disease studies since 2016
- □ Other considerations interactions with other risk factors, risk <0.5 Gy, absolute risks, epidemiological challenges
- Conclusions

Some preliminaries – meaning of low dose etc

Inflammation and circulatory disease

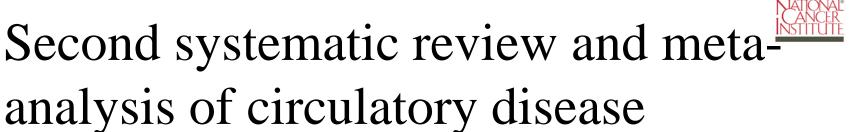
- Subtypes of circulatory disease associated with atherosclerosis largely inflammatory etiology (Ross N Engl J Med 1999 340 115-26)
 - In LSS long-lasting dose-related increases in pro-inflammatory (Hayashi *et al Am J Med* 2005 **118** 83-86; Hayashi *et al FASEB J* 2012 **26** 4765-73)
 - □ C-reactive protein
 - erythrocyte sedimentation rate
 - □ reactive oxygen species
 - \square IL-6, TNF- α , IFN- γ
 - In LSS long-lasting dose-related reductions in anti-inflammatory
 - □ IL-4

Inflammation and senescence

Endothelial cell activation results in differential up/down-regulation of inflammatory ICAM-1, PCAM-1 etc (Little et al.

Radiat Res 2008 169 99-109; Baselet et al Cell Molec Life Sci 2019 76 699-728)

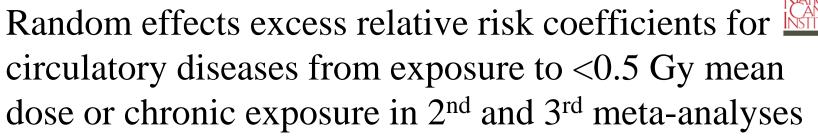
- \square upregulation at doses >0.5 Gy
- \square downregulation at doses < 0.5 Gy
- Senescent cells are potent source of many inflammatory cytokines (Stojanovic et al Eur Heart J 2020 41 2983-96)
- Senescence can be induced at low doses and dose rates (4.1 mGy/h) (Rombouts *et al Int J Radiat Biol* 2014 **90** 560-74)


What do we mean by low dose? Or moderate dose?

- □ For cancer there has been a lot of emphasis by ICRP, UNSCEAR, EU in recent years on ascertaining risk at low dose that is < 0.1 Gy
- As per previous slide for circulatory disease consideration of < 0.5 Gy [=low-moderate dose (Little et al Int J Radiat Biol 2021 97 782-803)], may make more sense than < 0.1 Gy
- In any case, as we shall see, little information on circulatory disease risk at < 0.1 Gy, although there is starting to be for < 0.5 Gy</p>

Recent systematic reviews/metaanalyses of circulatory disease in

moderate & low-dose epidemiological data


(Little et al. Env. Health Perspect. 2012 120 1503-11)`

- □ Restricted to human data exposed to:
 - □ acute mean dose <0.5 Gy or chronic exposures
 - good quality dosimetry
- \square Published $\geq 1/1/1990$
- □ 10 studies identified (2 of them A-bomb) out of 1480 articles (ISI Thompson) and 6497 (PubMed)
- ☐ Fixed effect + random effects analysis (random effects needed when significant heterogeneity)

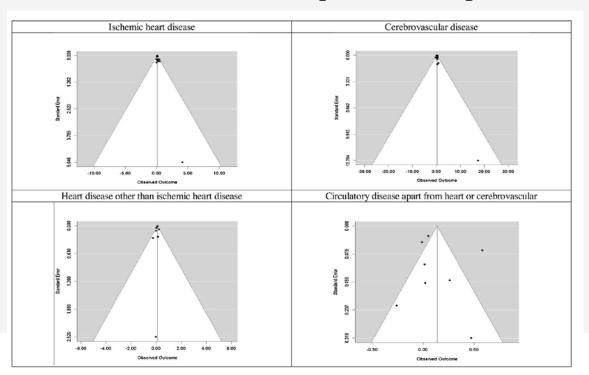
Third meta-analysis (Little Mut Res Revw 2016 770B 299-318)

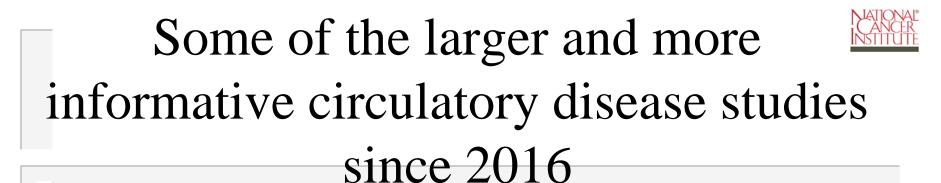
- Non-systematic review but recently initiated systematic review suggests captured most studies to mid 2016
- No restriction on dose, publication date
 - 25 studies identified (19 of them moderate/low dose)
- Meta regression analysis to explore effects of dose, dose rate

(Little et al. Env. Health Perspect. 2012 120 1503-11, Little Mut Res Revw 2016 770B 299-318)

Circulatory disease subtype	Little <i>et al</i> 2012 ERR / Sv (+95% CI)	Little 2016 ERR / Sv (+95% CI)
Ischemic heart disease	0.10 (0.04 to 0.15)	0.11 (0.04 to 0.17)
Non-ischemic heart disease	0.08 (-0.12 to 0.28)	0.06 (-0.08 to 0.19)
Cerebrovascular disease	0.21 (0.02 to 0.39)	0.23 (0.06 to 0.41)
Circulatory disease apart from heart disease and stroke	0.19 (-0.00 to 0.38)	0.14 (-0.05 to 0.32)

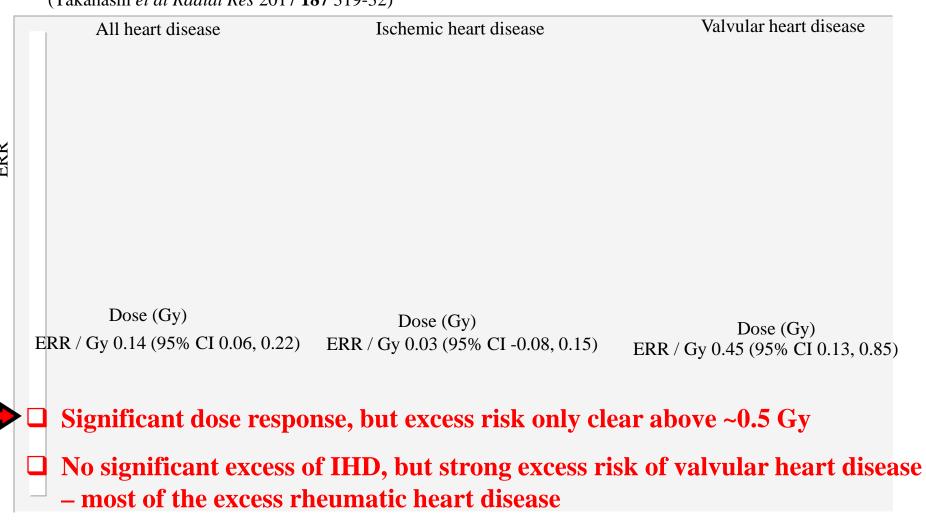
Evidence strongest for ischemic heart disease and stroke


Not much changes between two meta-analyses [but some overlap in studies assessed e.g. IARC 15-country, LSS]


Problems with meta-analysis: publication/selection bias?

(Little *Mut Res Revw* 2016 **770B** 299-318)

- ☐ Generally expect bias towards publications with significant results
- □ Funnel plot (mean *vs* SE) is reasonably symmetric, implying little or no bias, as does more formal Egger test
- ☐ However, small number of datapoints limits power of Egger test



Dose response for heart disease in A-bomb survivors

(Takahashi *et al Radiat Res* 2017 **187** 319-32)

 \square No indication of curvature in dose-response (p>0.5)

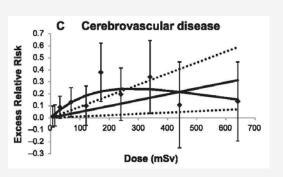
Dose response <0.5 Gy for circulatory disease other than heart, stroke in A-bomb

survivors

(Shimizu et al BMJ 2010 **340** b5349)

Dose range	ERR / Gy (95% CI)
Unrestricted	0.58 (0.45, 0.72)
< 1 Gy	0.45 (0.26, 0.66)
< 0.5 Gy	0.67 (0.35, 1.01)
< 0.2 Gy	1.01 (0.31, 1.78)

No significant excess of heart disease or stroke under 0.5 Gy

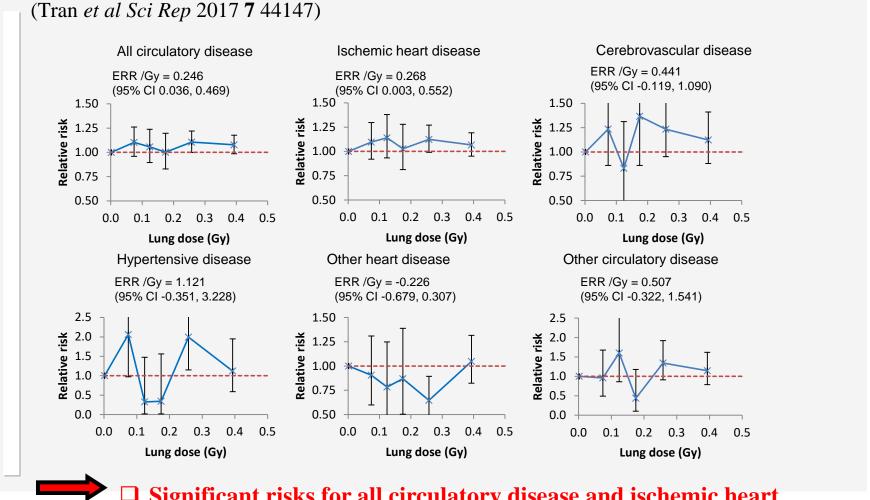

Circulatory disease mortality in INWORKS study

(Gillies et al Radiat Res 2017 188 276-90)

ERR /Gy = 0.22 (90% CI 0.08, 0.37)

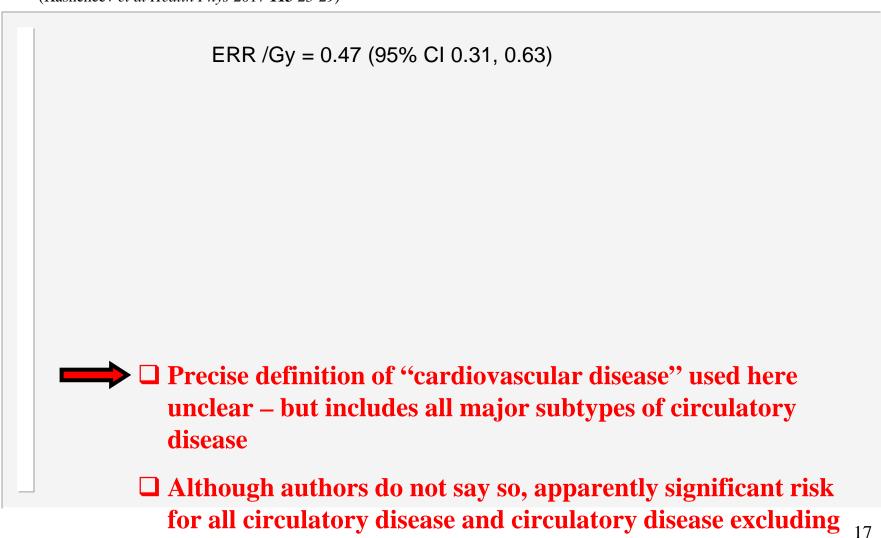
ERR /Gy = 0.18 (90% CI 0.004, 0.36)

ERR /Gy = 0.50 (90% CI 0.12, 0.94)



- **☐** Significant downward curvature (p=0.017) in cerebrovascular disease
- ☐ For all circulatory disease dose trend significant over 0-0.3 Gy
- ☐ For ischemic heart disease dose trend significant over 0-0.5 Gy
- □ Null risk for COPD (ERR/ Gy =-0.07) suggests smoking does not confound radiation dose response

Circulatory disease risks in Canadian and Massachusetts tuberculosis fluoroscopy cohorts



| Significant risks for all circulatory disease and ischemic heart disease – but risks only significant <0.5 Gy

Cardiovascular disease morbidity in Russian liquidators

(Kashcheev et al Health Phys 2017 113 23-29)

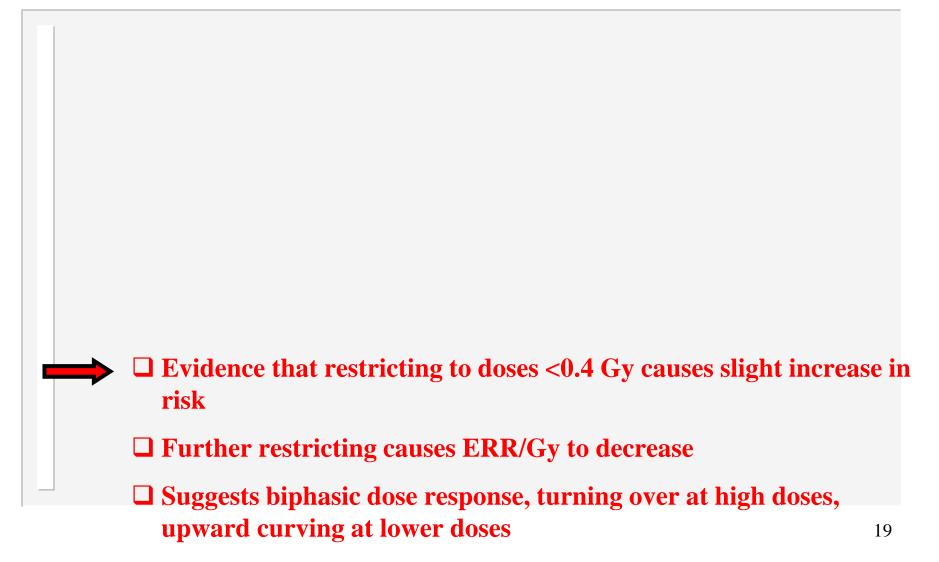
IHD for < 0.35 Gy (and possibly lower than that)

Heart disease mortality in UK NRRW (1)

(Zhang et al J Radiol Prot 2019 **39** 327-53)

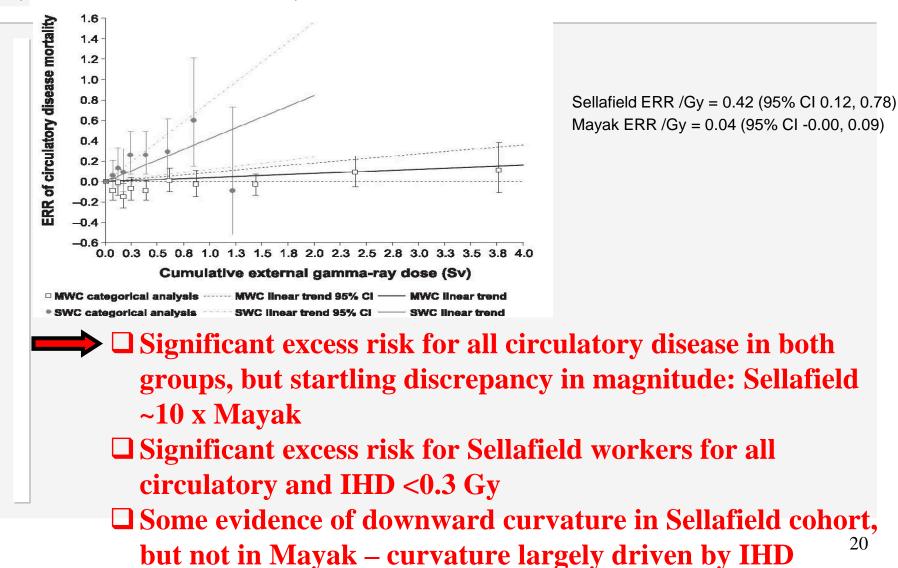
All heart disease ERR /Gy = 0.37 (95% CI 0.11, 0.65)

Ischemic heart disease ERR /Gy = 0.32 (95% CI 0.04, 0.61)


Myocardial infarction ERR /Gy = 0.54 (95% CI 0.16, 0.95)

- ☐ Significant excess risk for heart disease (HD), IHD and myocardial infarction <0.4 Gy
- □ No evidence of curvature in HD dose response overall, although borderline significant (p=0.048) downward curvature for IHD over full dose range (but not <0.4 Gy)
- ☐ Some evidence of biphasic dose response curving upwards at low doses, downwards at high doses

Heart disease mortality in UK NRRW (2)



(Zhang et al J Radiol Prot 2019 **39** 327-53)

Circulatory disease mortality in combined Sellafield and Mayak workers study

(Azizova et al Radiat Res 2018 189 371-88)

External doses to Sellafield and Mayak workers

(Azizova et al Radiat Res 2018 189 371-88)

Sellafield and Mayak cumulative external doses (Sv)

Sellafield and Mayak mean external doses (Sv)

	Sellafield	Mayak
Males	0.08	0.55
Females	0.01	0.44

- Mean doses much higher in Mayak worker cohort than in Sellafield
 - ☐ Might this, in conjunction with curvature in dose response for IHD and CeVD, explain some of discrepancy in risk? 21

Circulatory disease mortality in US uranium enrichment workers

(Anderson et al Occup Environ Med 2021 78 105-11)

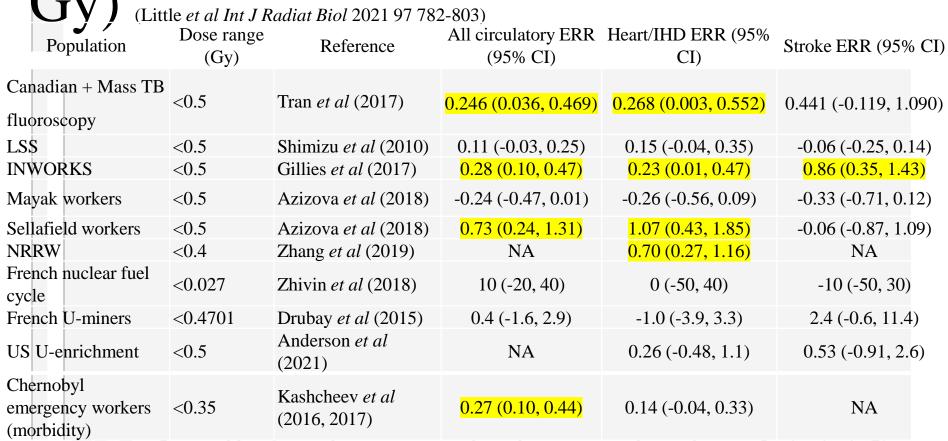
Ischemic heart disease Cerebrovascular disease ☐ No significant trend overall, either for ischemic heart disease or stroke ☐ Suggestion of increasing trend per unit dose as dose range restricted, implying downwardly curving dose response **☐** Non-significant excess trend with internal uranium dose

Other considerations – interactions with other risk factors, risk <0.5 Gy, absolute

risks, epidemiological challenges

Interactions with other lifestyle and medical risk factors

- Some studies (greater % of therapeutic vs moderate/low dose) collected information on major independent lifestyle/medical risk factors
 - □ (a) diabetes (b) hypertension (c) obesity (d) high cholesterol (e) smoking


Study	Risk factors		
LSS	Smoking, alcohol intake, obesity, education, occupation, diabetes		
Mayak	Smoking. alcohol intake, obesity, blood pressure		
INWORKS+NRRW	Industrial/non-industrial classification		
British Nuclear Fuels fuel cycle workers	Obesity, blood pressure, smoking, shift work, noise, SES		
Mass+Canadian TB fluoroscopy	Smoking, tuberculosis stage (and for part diabetes, antibiotic use, alcohol consumption)		
US peptic ulcer	Smoking, alcohol consumption		
Nordic breast cancer	Concomitant CT, smoking, diabetes, obesity		
Netherlands Hodgkin lymphoma	Concomitant CT, smoking, obesity, diabetes, hypertension, hypercholesterolemia		

Moderate/low dose

Therapeutic dose

 □ Little evidence that these risk factors confound radiation dose response in these studies – but might in others

Summary moderate dose risk (<0.5

- ERR for all circulatory endpoints tend to be ~0.1-1 / Gy
- ☐ For many of larger studies ERR are significant
- Even when NS trends tend to be positive
- \square Some overlap e.g. Sellafield \subset NRRW \subset INWORKS

Radiation-Exposure-Induced Death for Various Subtypes of Circulatory Disease, by Country (Little

et al. Environ. Health Perspectives 2012 120 1503-11

A .	. 4
เกม	ntry
CUU	TARUA N

Radiation-Exposure-Induced Death, x 10⁻² Sv (+95% CI) using Random Effects Model

		Other All		All	UNSCEAR cancer risks		
	Ischaemic	Other heart		circulatory	circulatory	All solid	Leukemia
	heart disease	disease	Stroke	disease	disease	cancer	excl CLL
China	0.92	0.11	4.31	1.43	6.76	3.95	0.27
	(0.41, 1.42)	(-0.16, 0.37)	(0.48, 8.14)	(-0.01, 2.86)	(2.63, 10.89)	3.89	0.42
France	0.50	0.54	0.92	0.53	2.50	-	-
	(0.22, 0.78)	(-0.85, 1.94)	(0.10, 1.74)	(0.00, 1.05)	(0.77, 4.22)		
Germany	1.71	0.97	1.69	1.38	5.75	-	-
	(0.76, 2.65)	(-1.52, 3.46)	(0.19, 3.19)	(-0.01, 2.76)	(2.39, 9.10)		
Japan	0.57	0.80	2.19	0.45	4.01	4.65	0.32
1	(0.25, 0.88)	(-1.25, 2.85)	(0.24, 4.14)	(0.00, 0.91)	(1.13, 6.89)	4.90	0.43
Russia	2.82	0.31	4.59	0.79	8.51	-	_
	(1.26, 4.39)	(-0.49, 1.11)	(0.51, 8.66)	(0.00, 1.57)	(4.00, 13.02)		
UK	1.70	0.37	2.24	0.76	5.07	5.15	0.38
	(0.76, 2.64)	(-0.58, 1.32)	(0.25, 4.22)	(0.00, 1.53)	(2.55, 7.58)	4.40	0.43
USA	1.82	0.57	1.29	0.80	4.48	4.74	0.47
	(0.81, 2.82)	(-0.89, 2.03)	(0.14, 2.44)	(0.00, 1.61)	(2.22, 6.74)	4.41	0.42

Circulatory disease absolute risks comparable with cancer risk

Epidemiological challenges

- ERR slightly lower than for cancer typically 0.1-1 /Gy vs 0.5-2.0 /Gy
 - ☐ Statistical power generally lower
- At least five major independent risk factors for circulatory disease (all varying risks by factor of ~2)
 - □ Not many datasets have information on all five
 - No evidence that they confound in studies where examined but might in others
- Most studies are of mortality rather than incidence
 - Problem of misdiagnosis and ascertainment (e.g. Mayak mortality outside Ozyorsk)
 - Many types of circulatory disease are all equally radiogenic?
 - What is target tissue? So what is correct dose?

Conclusions

- Meta-analysis of moderate+low-dose data suggests significant excess risk for two out of four CD endpoints (ischemic heart, stroke), and aggregate risk significant
- Emerging evidence of risk at <0.5 Gy
- Although ERR tend to be modest, because of high baseline prevalence the population risk is comparable to radiation-induced cancer
- A-bomb + Mayak and many medical cohorts have information on most major lifestyle factors for CD (smoking, drinking, obesity, HDL+LDL cholesterol, hypertension, diabetes), but little indication that these confound
- ☐ Importance of getting other major risk factor data in other 28