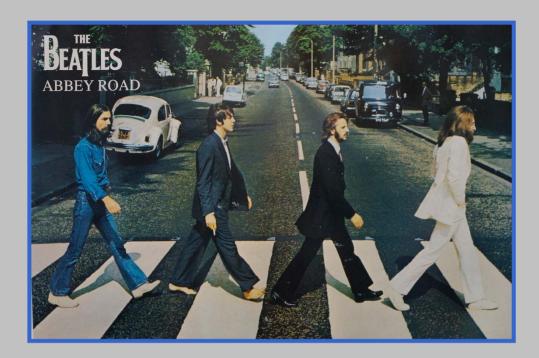
Trends in Use of Medical Diagnostic Procedures and Efforts to Address Optimization and Justification



Donald P. Frush MD, FACR FAAP

Duke University Medical Center

donald.frush@duke.edu

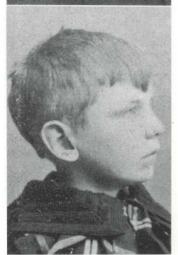
- Yesterday
- I Want to Hold Your Hand
- Come Together

https://www.virtualsheetmusic.com/score/HL-140123.html

<u>https://postermuseum.com/collections/rock-music/products/the-beatles-abbey-road-crossing-</u>

Yesterday

- I Want to Hold Your Hand
- Come Together

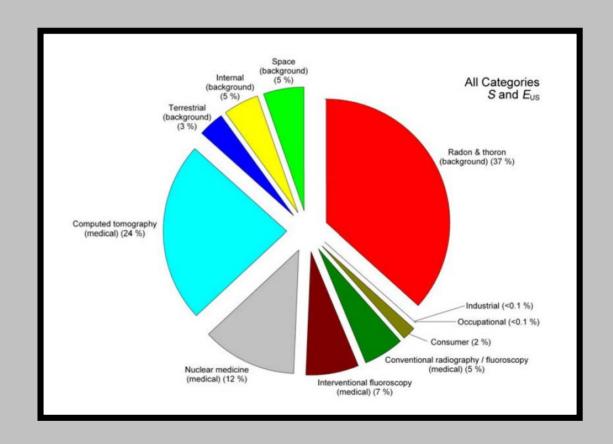


https://www.virtualsheetmusic.com/score/HL-140123.html

https://postermuseum.com/collections/rockmusic/products/the-beatles-abbey-road-crossing-

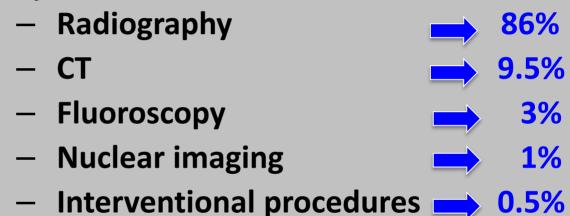
Effect of x-rays on the hair (Kolle, 1897). Top, Large area of hair missing from the side of a boy's head 3 weeks after an x-ray exposure of 40 minutes with the tube about 18 inches from the skull. The boy gave no history of pain, itching, or other signs of inflammation; all he knew was that on the previous night the hair had suddenly fallen out. Bottom, Appearance of the boy 4 months later. The new hair grew well and had been cut three times.⁶

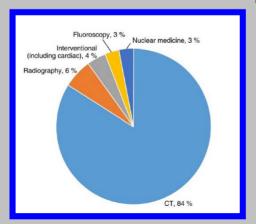
The New york Times

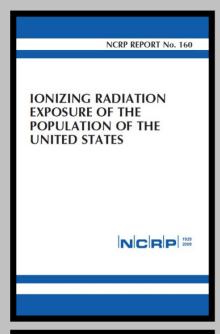


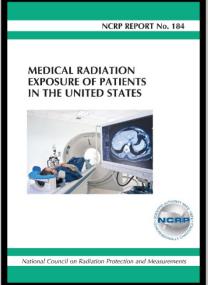
NCRP REPORT No. 160

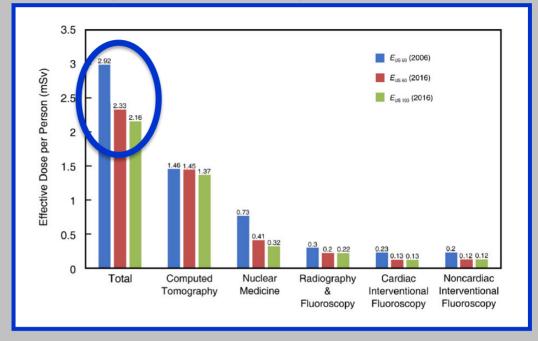
IONIZING RADIATION EXPOSURE OF THE POPULATION OF THE UNITED STATES




2006: Nearly 50% of U.S. annual exposure was from medical sources


Ionizing radiation procedures account for the majority of pediatric imaging examinations


NCRP REPORT No. 184 MEDICAL RADIATION **EXPOSURE OF PATIENTS** IN THE UNITED STATES National Council on Radiation Protection and Measurements Relative percentages of ionizing radiation examinations performed across the age range up to 18 yrs:



...but CT accounts for 84% of U.S. per capital medical radiation dose in children

Estimated average annual individual ED in U.S. from diagnostic and interventional patient radiation exposures (mSv) (from NCRP)

Annual individual (per capita) effective dose from diagnostic and interventional medical procedures was estimated to have been

- 2.9 mSv in 2006
- 2.3 mSv in 2016: 20% decrease

What is (May be) Monitored? Radiation Dose Indices¹

All:

- number/type of examinations
- effective dose

Radiography : K_{ar} P_{ka},EI, DI (AGD mammography)

Fluoroscopy : time, K_{ar} P_{ka}

CT : CTDI_{vol}, DLP, SSDE

Nuclear Medicine : administered activity

DOI: 10.1002/acm2.12089

Received: 30 November 2016 Revised: 30 November 2016 Accepted: 20 January 2017

AAPM REPORTS & DOCUMENTS

WILEY

AAPM medical physics practice guideline 6.a.: Performance characteristics of radiation dose index monitoring systems

Dustin A. Gress¹ | Renee L. Dickinson² | William D. Erwin¹ | David W. Jordan³ | Robert J. Kobistek⁴ | Donna M. Stevens⁵ | Mark P. Supanich⁶ | Jia Wang⁷ Lynne A. Fairobent⁸

¹Department of Imaging Physics, University of Texas MD Anderson Cancer Center. Houston, TX, USA

²Colorado Associates in Medical Physics, Colorado Springs, CO, USA

3Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH.

⁴National Physics Consultants, Ltd., Mentor, OH, USA

⁵Northwest Permanente, PC, Kaiser Sunnyside Medical Center, Clackamas, OR. USA

⁶Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA

⁷Environmental Health and Safety, Stanford University, Stanford, CA. USA

⁸American Association of Physicists in Medicine, Alexandria, VA, USA

Author to whom correspondence should be addressed. Dustin A. Gress

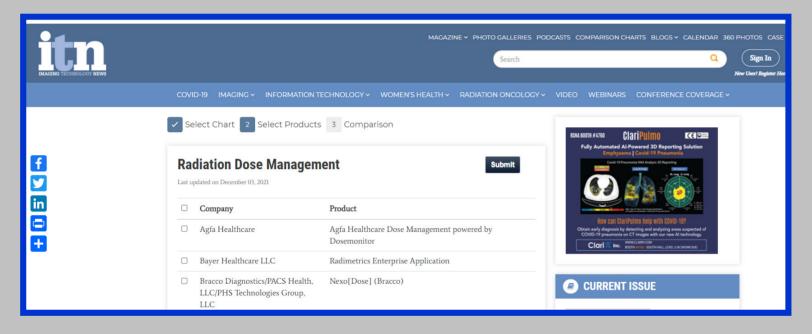
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States.

The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner.

Each medical physics practice guideline represents a policy statement by the AAPM. has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.

file:///C:/Users/frush943/Downloads/Gress-2017-Aapm----------medical-physics-pra.pdf

Microsoft Word - PC 8706 preprint version.docx (iaea.org) "PREPRINT"


TABLE 1. MODALITY SPECIFIC RADIATION EXPOSURE METRICS

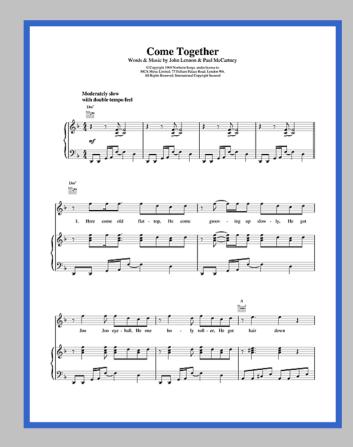
Quantity [27, 28]	Recommended symbols	Unit used in practice	Other common symbols used in literature	Closely related quantity	Modality
Incident air kerma Incident air kerma rate	$K_{a,i}$ $\hat{K}_{a,i}$	mGy mGy.s ⁻¹	IAK		Diagnostic radiography and fluoroscopy, image guided interventional
Entrance surface air kerma	$K_{a,c}$	mGy	ESAK	Entrance- surface dose (ESD)*	procedures, conventional radiation therapy simulators and imaging equipment for image guided radiotherapy, dental intraoral radiography mammography and breast tomosynthesis
Air kerma at the patient entrance reference point**	$K_{a,r}$	mGy	CAK (Cumulative reference air kenna)		Fluoroscopy and fluoroscopy guided interventional procedures
Air kerma-area product	P _{KA}	mGy.cm ^{2***}	PAP	Dose-area product (DAP)*	Radiography, fluoroscopy, image guided interventional procedures, dental panoramic radiography and dental CBCT
Weighted CT air kerma index	Cw E.A.	mGy [30]		Weighted CT dose index (CTDI _w)*	СТ
Volume CT air kerma index	Croi	mGy [30]		Volume CT dose index (CTDI _{vol})*	СТ
Air kerma-length product	P_{KL}	mGy.cm [30]		Dose-length product (DLP)*	СТ
Activity of a adjopharmaceutical	A	Bq			Nuclear medicine
Activity of a radiopharmaceutical administered per unit body mass	A/body mass	Bq.kg ⁻¹			Nuclear medicine

^{**}Also names "cumulative dose", "reference air kerma" and "reference point air kerma" have been used in the

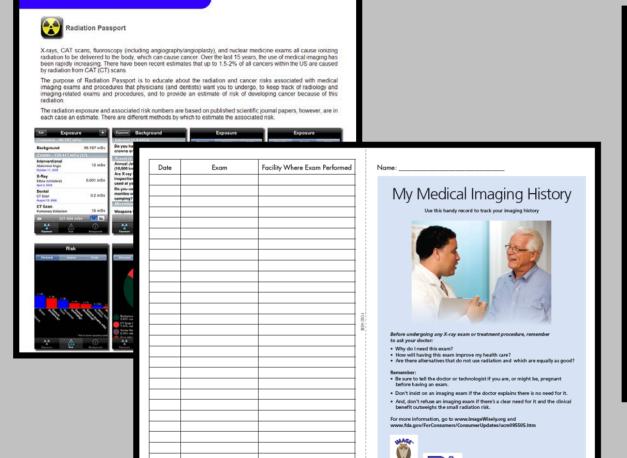
^{***}Further recommendation for the unit of 'air kerma-area product' of X-ray equipment for interventional procedures is provided in Ref. [29].

Medical Imaging Radiation Monitoring Products

https://www.itnonline.com/chart/radiation-dose-management



Yesterday



Come Together

https://www.virtualsheetmusic.com/score/HL140123.html
https://postermuseum.com/collections/rockmusic/products/the-beatles-abbey-road-crossing-

753

About Products Buy Support Contact

North Carolina Department of Health and Human Services Division of Medical Assistance

2501 Mail Service Center • Raleigh, N. C. 27699-2501 • Tel 919-855-4100 • Fax 919-733-6608

Beverly Eaves Perdue, Governor Lanier M. Cansler, Secretary Craigan L. Gray, MD, MBA, JD, Director

June 30, 2011

To: Jane Doe 555 Main Street Anywhere, NC 12345

DearMs. Doe,

This letter is to inform you that you had 10 or more CT scans in 2010. This is more than most people get in a year. Medicaid records show that you went through a CT scanner <u>##</u> times in 2010.

CT scans, sometimes called CAT scans, expose youto radiation while taking a picture of what is inside your body. Too much radiation can be bad for your health. It can increase your chances of getting some kinds of cancer.

Sometimes CT scans are important for doctors to see what is going on when you are sick or hurt. But sometimes there may be other ways to figure out what is wrong.

If a doctor treating you does not know you well or have your medical records, that doctor will not know how many CT scans you have had. It is important for you to remind them of this information. Showing your doctors this letter will help them treat you as safely as possible. Please take this letter with you when you go to the emergency department or doctor's office.

Call 1-800-662-7030 if you have any questions.

Please call [enrollment office number] for help finding a primary care doctor in your town.

Wishing you the best of health,

The Joint Commission

In July 2015, TJC mandated that:

- 1. "The [hospital/practice] documents the radiation dose (CTDI_{vol} or DLP) on every study produced during a computed tomography (CT) examination. The radiation dose must be exam specific, summarized by series or anatomic area, and documented in a retrievable format.", and
- 2. "The [hospital/practice] re where the radiation dose (computed tomography (Cdagnostic CT exams excelled in imaging protes." 4.
- Retrievable format
 - 2. Review exams exceeding expected ranges
 - 3. Compare doses to benchmarks
 - 4. Radiation safety designee

United States Environmental Protection Agency Interagency Working Group on Medical Radiation EPA-402-R-10003

Radiation Protection Guidance for Diagnostic and Interventional X-Ray Procedures

Federal Guidance Report No. 14

CT: pages 58-64

DEPARTMENT OF HEALTH & HUMAN SERVICES Centers for Medicare & Medicaid Services 7500 Security Boulevard, Mail Stop C2-21-16 Baltimore, Marvland, 21244-1850

Center for Clinical Standards and Quality/Survey & Certification Group

Ref: S&C-15-38-Hospitals

DATE: May 15, 2015

TO: State Survey Agency Directors

FROM: Director

Survey and Certification Group

SUBJECT: Revised Hospital Radiologic and Nuclear Medicine Services Interpretive

Guidelines-State Operations Manual (SOM) Appendix A

Memorandum Summary

Updated Guidance for Hospital Services: The Centers for Medicare & Medicaid Services (CMS) has updated the interpretive guidelines for the hospital Conditions of Participation (CoPs) for the below to reflect current accepted standards of practice:

- o Radiologic Services at 42 CFR 482.26, and
- Nuclear Medicine Services at 42 CFR 482.53

Background

Radiologic and nuclear medicine services have improved the ability to detect and treat a wide variety of conditions and diseases, and advanced diagnostic and therapeutic procedures have become routine in many hospitals throughout the country. While these services provide

... "updated the interpretive guidelines for the hospital Conditions of Participation (CoPs) for the below to reflect current accepted standards of practice"

over the course of his or her litetime. Moreover, there have been reports of patients receiving radiation overdoses associated with CT scans in several healthcare facilities throughout the country, prompting additional investigations of the risks associated with scans.

Radiology

The Federal Government's Oversight of CT Safety:

Regulatory Possibilities¹

H. Benjamin Harvey, MD, JD Pari V. Pandharipande, MD, MPH

omputed tomography (CT) has become a routine part of medicine in the United States, with close to 70 million scans completed per year (1). While the clinical benefits of CT have always come hand-in-hand with the risk of radiation exposure, it is not until recently that this risk has reached the forefront of public awareness, prompting the federal government to take a renewed interest in

tant for meaningful involvement, this body of knowledge is not at the fingertips of the practicing radiologist. In this report, we update the radiology community on the federal government's investigations of CT safety, deconstruct its authority and options for regulating CT practices, and examine current regulatory interventions as well as future possibilities.

Volume 262: Number 2—February 2012

MEDICAL ERROR

User Certification/Quality Assurance

- · Standardization of certification/education requirements for CT technologists
- · Mandatory quality assurance processes

Adverse Event Reporting

- Improved mechanisms for technologists and staff to report medical errors within institutions
- · Improved reporting of adverse events to the FDA
- . Provide better access to the adverse event database at the FDA

CT Scanner Design

- Warning or lock-out systems to prevent radiation overdoses, restricted log-in access to scanners, restricted access for changing CT protocols
- Standardization of CT terminology and protocol element names (eg, scout versus scanogram) to avoid user error
- · Standardization of technical information provided to users

OVERUTILIZATION

Authorization Systems to Ensure Medical Appropriateness

- · Decision support systems for ordering clinicians
- · Benefits management companies performing preauthorization assessments

Legislation to Limit Self-referral

DOSE OPTIMIZATION

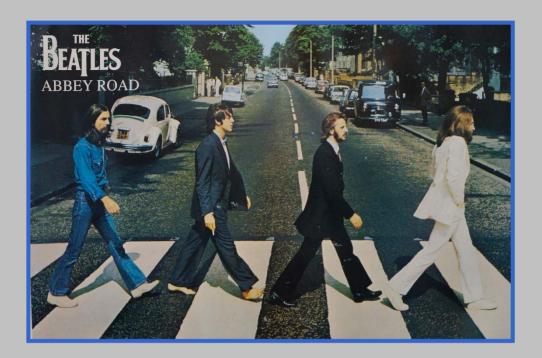
Diagnostic Reference Levels

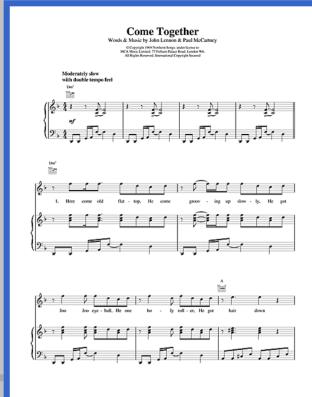
 Diagnostic reference levels to distinguish between acceptable and inappropriate practices at the facility level

Dose-Reduction Techniques

- Improvement of current dose-reduction techniques and discovery of novel dose-reduction strategies
- Requirement for specific dose reduction features on forward production units (ie, tube current modulation, collimators)

Dose Tracking

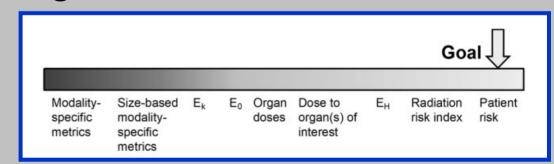

- · Documentation/reporting of radiation dose for every CT study
- National dose registry to help define best practices and allow for interfacility comparisons of dose indexes.


Figure 1: Specific expert recommendations from congressional and FDA testimony on ways to address the issue of CT safety. Recommendations were extracted from the House congressional hearing, "Medical Radiation: An Overview of the Issues," held in February 2010 and the FDA public meeting, "Device Improvements to Reduce Unnecessary Radiation Exposure from Medical Imaging," held in March 2010 (14,15).

Principles of Radiation Protection

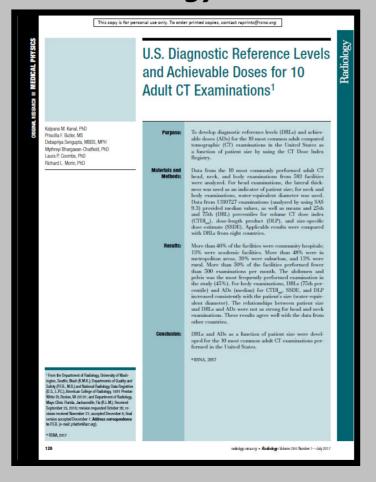
Regulatory oversight... and

- Advances in what (imaging technology)
 - Including artificial intelligence
- Advances in how (application)
 - e.g. limiting multiphase exams
- Advances in when (justification)
 - e.g. clinical decision support (NDSL CareSelect Imaging™)


- Yesterday monit
- I Want to Hold Your Hand
- Come Together

https://www.virtualsheetmusic.com/score/HL-140123.html

<u>https://postermuseum.com/collections/rock-music/products/the-beatles-abbey-road-crossing-</u>


Coming Together

- Monitoring technology and programs that provide value
 - represent voices from multiple stakeholders
 - generic metrology, efficient, adaptable (avoid data-drowning)
 - beyond current dose indices: organ dose? risk? quality...
- Defining what that value is (how do we use this?)
 - including benchmarks
 - in context to current understanding of risk
 - promoting benefit of imaging

U.S. CT Diagnostic Reference Levels

Radiology 2017

Radiology 2021

Radiology

ODIGINAL DESEADOR . DEMATDIC IMAGINI

U.S. Diagnostic Reference Levels and Achievable Doses for 10 Pediatric CT Examinations

Kalbana M. Kanal, PhD . Priscilla F. Butler, MS . Mythrevi B. Chatfield, PhD . level Wells, PhD . Elisan Samei, PhD . Michael Simanowith, MD . Dan Golden, BA . Dustin A. Gress, MS . Judy Burleson, MHSA . William F. Sensakovic, PhD . Keith I. Strawe, MSc . Donald Frush, MD

From des Department Reinleig p. (S.A.M.), Christophyr Weddigen, 1819/NR-Padich, D. R., 2029/R., Sende, W. 2021/D., Superment (W. 2019, and delay get disc).

M. S.C. A.M. S.D. Chiefle (D. Chiefle), M. Allentine (Chapper Belleigh get Hand, 1938, 1844). Sender (J. S. M. 1938). Sender (J. S. M. 19

Radiology 2021; 000:1-11 * https://doi.org/10.1148/radiol.2021211241 * Content codes: E1 PH

Badgoond: Diagnostic reference levels (DRLs) and achievable doses (ADs) were developed for the 10 most commonly performed pediatric CT examinations in the United States using the American College of Radiology Dose Index Registry.

Propose: To develop robust, current, national DRLs and ADs for the 10 most commonly performed pediatric CT examinations as a function of patient age and size.

Matwiels and Mathods: Data on 10 pediatric (ie, patients aged 18 years and younger) CT examinations performed between 2016 and 2020 at 1625 facilities were analyzed. For head and neck examinations, dose indexes were analyzed based on patient age, for body examinations, dose indexes were analyzed for patient age and effective diameter. Data from 1543535 examinations provided medians for AD and 75th percentiles for DRLs for volume CT dose index (CTD1), dose-length product (DLP), and size-specific dose

Books: Of all facilities analyzed, 66% of the facilities (1068 of 1625) were community hospitals, 16% (264 of 1625) were free. standing centers, 9.5% (154 of 1625) were academic facilities, and 3.5% (57 of 1625) were dedicated children's hospitals. Fifty-two percent of the patients (798577 of 1543535) were boys, and 48% (744958 of 1543535) were gitls. The median age of patients was 14 years (boys, 13 years; girls, 15 years). The head was the most frequent anatomy examined with CT (876655 of 1543535 examinations [57%]). For head without contrast material CT examinations, the age-based CTDL_AD ranged from 19 to 46 mGy, and DRL ranged from 23 to 55 mGy, with both AD and DRL increasing with age. For body examinations, DRLs and ADs for size-based CTDI ... SSDE, and DLP increased consistently with the patient's effective diameter.

Gambrius Diagnostic reference levels and achievable doors as a function of patient age and effective claimeter were developed for the 10 most commonly performed CT pediatric camminations using American College of Radiology Dose Index Registry data. These benchmarks can guide CT ficilities in adjusting pediatric CT protocols and resultant does for their patients.

Diagnostic reference level (DRL) benchmarks for radia-tion protection and optimization of patient imaging survey, on the basis that 50% of the facilities have already achieved doses at or below this value (8). were first mentioned by the International Commission on

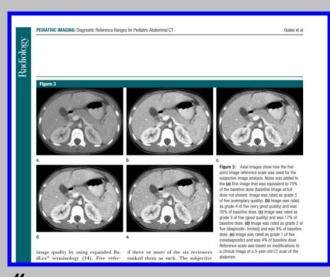
tion Board advisory group to recognize more typical values Radiation Protection and Measurements proposed that ADs be set at the median, or 50th percentile, of a dose marks have been developed in the United States.

In 2017, DRLs were published for adult CT examina-Radiological Protection (ICRP) in 1990 (1) and clarified tions in the United States using the American College of further in 1996 (2). The DRL is used for identifying situ- Radiology CT Dose Index Registry (DIR) (9-11). Few ations where the levels of patient dose are unusually high current U.S. recommendations exist for pediatric DRLs (2.3). The use of DRLs is endorsed by professional, advisory, and regulatory organizations. The ICRP emphasizes clinical examinations (12,13). Other work in the United that DRL values "are not for regulatory or commercial States has used clinical examinations from DIR data to purposes, not a dose restraint and not linked to limits or provide age- or size-based dose index guidance for pediconstraints" (4). DRLs are typically set at the 75th percentile of the dose distribution from a survey conducted across summarized existing national DRLs from 17 countries in a broad user base using a specified dose measurement protocol. They are established both regionally and nationally, ric Imaging based mainly on the anatomic region imaged; and considerable variations have been seen across regions these are primarily presented in age groups and, in some cases, weight groupings (17). At this time, there are no na-The concept of achievable dose (AD) was introduced tional DRLs based on patient dimensions or size. The purin 1999 in a United Kingdom National Radiation Protec-pose of this study is to use the CT DIR to develop robust, current, national DRLs and ADs for the 10 most comwithin a practice (7). In 2012, the National Council on monly performed pediatric CT examinations as a function of patient age and size. This is the first time these bench-

This copy is for personal use only. To order printed copies, contact reprints@rsna.ora

Benchmarks: DRLs

EUCLID: pursue


indication-based DRLs

Paulo et al. Insights into Imaging (2020) 11:96 Insights into Imaging https://doi.org/10.1186/s13244-020-00899-v ORIGINAL ARTICLE **Open Access** Diagnostic Reference Levels based on clinical indications in computed tomography: a literature review Graciano Paulo 1*0, John Damilakis², Virginia Tsapaki³, Alexander A. Schegerer^{4,5}, Jacques Repussard⁶, Werner Jaschke⁷, Guy Frija⁸ and European Society of Radiology⁹ Background: In August 2017, the European Commission awarded the "European Study on Clinical Diagnostic Reference levels for X-ray Medical Imaging" project to the European Society of Radiology, to provide up-to-date Diagnostic Reference Levels based on clinical indications. The aim of this work was to conduct an extensive literature review by analysing the most recent studies published and the data provided by the National Competent Authorities, to understand the current situation regarding Diagnostic Reference Levels based on clinical indications for computed tomography. Results: The literature review has identified 23 papers with Diagnostic Reference Levels based on clinical indications for computed tomography from 15 countries: 12 of them from Europe. A total of 28 clinical indications for 6 anatomical areas (head, cervical spine/neck, chest, abdomen, abdomen-pelvis, chest-abdomen-pelvis) have been identified. Conclusions: In all the six anatomical areas for which Diagnostic Reference Levels based on clinical indications were found, a huge variation of computed tomography dose descriptor values was identified, providing evidence for a need to develop strategies to standardise and optimise computed tomography protocols. Keywords: Diagnostic Reference Levels, Computed tomography, Clinical indications, Computed tomography dose descriptors

Goske et al Radiology 2013 (268)

Diagnostic Reference Ranges

For Pediatric Abdominal CT

"The concept of DRRs addresses the balance between the patient's risk (radiation dose) and benefit (diagnostic image quality)."

Appendicitis: Simulated Dose (mA) Reduction

There is a "Too Low..."

Original

50% mA Reduction

75% mA Reduction

Monitoring Beyond Dose

"DRLs have reached a stage where there is an evident need of introducing image quality evaluation process linked to dose evaluation as both go hand-in-hand"

Radiology

REVIEWS AND COMMENTARY - EDITORIAL

Benchmarking CT Radiation Doses Based on Clinical Indications: Is Subjective Image Quality Enough?

Mahadevappa Mahesh, MS, PhD

Dr. Mahesh is a profusor of radiology and cardiology at the Johns Hopkins University School of Medicine and a medical physicis at Johns Hopkins Hopkins Hopkins Hopkins Hopkins His research increase are in CT and radiation dose assessment in medical imaging. He is associate editor of the Johnson Johnson School of the Johnson Johnson Hopkinson Ho

The number of CT examinations performed in the United States and worldwide has consistently grown since the introduction of multiple-row detector CT around the turn of the century. The advent of multiple-row detector CT paved new ways for diagnosis, treatment, and post-treatment evaluation because of fast data acquisition, high spatial and temporal resolution, and better three-dimensional image acquisitions. The dramatic increase in the number of CT examinations performed drew considerable attention to the radiation doses associated with CT studies. According to the National Council on Radiation Protection and Measurements, or NCRP, Report 160 (1) buildished in 2009. CT doses were the largest contribusions of the contribusion of the contribusion of the council of the contribusion of the council of the contribusion of the contribusion

In addition, all CT examinations of a specific anatomic area, such as the head, do not all need to have the same image quality—all may not require the same radiation dose levels. For example, head CT for sinus evaluation can be performed with a lower radiation dose than head CT performed for evaluating stroke. This provides an opportunity to optimize CT protocols based on clinical indications. Similarly, scanning of the heart (ie, calcium soring studies) does not need the same level of radiation dose as cardiac CT angiography because the clinical indications, such as calcifications, are readily visible even with a noisy image due to a lower radiation dose.

The advent of radiation dose management systems, or dose registries, has allowed for the establishment of diagnostic reference levels for CT examinations (4). Registries can be used to describe "typical" radiation doses for a specific type of CT examination. Despite registries, we still see a wide range of radiation doses, up to three- to 10-fold variation, for the same type of CT examination. Thus, there remains a need to optimize CT protocols by considering both image quality and radiation dose levels.

In this regard, Smith-Bindman and colleagues (5) present an image quality-based framework for CT radiation dose in this issue of *Radiology*. In their study, the authors

"... there remains a need to optimize CT protocols by considering both image quality and radiation dose levels ... In my opinion, such image quality metrics must be quantitative and not subjective."

Competitive Landscape 2019

Leading market radiation dose monitoring products focus on dose and basic analytics ONLY: NOT QUALITY (

Product name	Data Access	Data Integrity	Analysis Used	Metrics and Informatics		
				Dose	Quantitative Quality Assessment	
Bayar Radimetrics	Yes	Limited	Basic	Basic	None	
GE DoseWatch	Yes	Limited	Basic	Basic	None	
Imalogix	Yes	Limited	Basic	Basic	None	
DoseM	Yes	Limited	Basic	Basic	None	
NovaDose	Yes	Limited	Basic	Basic	None	
DoseMonitor	Yes	Limited	Basic	Basic	None	
DoseTrack	Yes	Limited	Basic	Basic	None	

Courtesy Ehsan Samei

Noise, dose, resolution reference levels and ranges: L = median; R = Range 25% - 75%

Chest CT	Noise		Dose		Resolution	
Size Range (cm)	NRL	NRR	DoRL	DoRR	RRL	RRR
21-25	10.8	7.6	3.3	2.1	0.46	0.06
25-29	9.8	6.8	5.2	2.5	0.47	0.06
29-33	10.2	5.7	7.7	3.7	0.48	0.08
33-37	10.5	6.4	11.1	7.3	0.48	0.10
37-41	10.6	7.6	15.0	12.4	0.47	0.10
Abd-Pelvis CT	Noise		Dose		Resolution	
Size Range (cm)	NRL	NRR	DoRL	DoRR	RRL	RRR
21-25	6.9	2.1	5.3	1.6	0.46	0.08
25-29	7.7	2.4	6.7	2.5	0.46	0.09
29-33	8.2	2.7	8.8	3.6	0.46	0.10
33-37	8.4	3.3	11.8	5.0	0.46	0.11
37-41	8.0	3.9	14.7	8.0	0.45	0.12

true CT diagnosis reference is dose + quality

Recurrent Imaging and Cumulative Effective Dose (CED): Generating Dialogue

JOINT POSITION STATEMENT AND CALL FOR ACTION FOR STRENGTHENING RADIATION PROTECTION OF PATIENTS UNDERGOING RECURRENT RADIOLOGICAL IMAGING PROCEDURES

This Position Statement was developed by the International Atomic Energy Agency (IAEA) jointly with the European Federation of Organizations for Medical Physics (EFOMP), European Society of Radiology (ESR), Global Diagnostic Imaging, Healthcare IT and Radiation Therapy Trade Association (DITTA), Heads of European Radiological Competent Authorities (HERCA), Image Gently Alliance, International Organization for Medical Physics (IOMP), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT), in collaboration with the World Health Organization (WHO).

INTRODUCTION

Medical imaging is immensely beneficial in the diagnosis and management of many health conditions. Benefits of a given medical imaging procedure far outweigh inherent radiation risks when the procedure is both clinically indicated and correctly performed, using the minimum necessary radiation exposure to achieve the diagnostic or interventional objective. The Bonn Call for Action, jointly issued by the IAEA and WHO, emphasized the need for enhanced implementation in clinical practice of the principles of justification and optimization, the right procedure performed right, spotlighting radiation protection and safety for each patient exposure.

Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams

Frequently Asked Questions


Introductio

In August of 2021, the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) jointly released the following position statement advising against using information about a patient's previous cumulative dose information from medical imaging exams to decide the appropriateness of future imaging exams. This statement was also endorsed by the Radiological Society of North America (RSNA).

It is the position of the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) that the decision to perform a medical imaging exam should be based on clinical grounds, including the information available from prior imaging results, and not on the dose from prior imaging-related radiotion exposures.

AAPM has long advised, as recommended by the International Commission on Radiological Protection (ICRP), that justification of potential patient benefit and subsequent optimization of medical imaging exposures are the most appropriate actions to take to protect patients from unnecessary medical exposures. This is consistent with the foundational principles of radiation protection in medicine, namely that patient radiation dose limits are inappropriate for medical imaging exposures. Therefore, the AAPM recommends against using dose values, including effective dose, from a patient's prior imaging exams for the purposes of medical decision making. Using quantities such as cumulative effective dose may, unintentionally or by institutional or regulatory policy, negatively impact medical decisions and patient care.

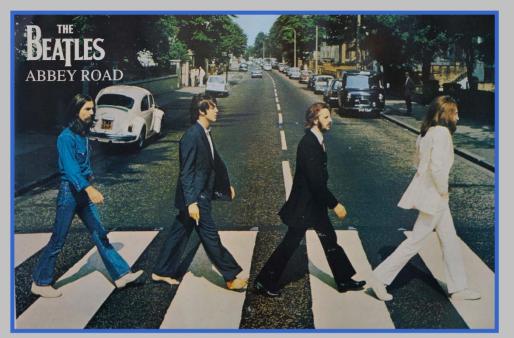
This position statement applies to the use of metrics to longitudinally track a patient's dose from medical radiation exposures and infer potential stochastic risk from them. It does not apply to the use of organ-specific doses for purposes of evaluating the onset of deterministic effects (e.g., absorbed dose to the eye lens or skin) or performing epidemiological research.

https://www.iaea.org/sites/default/files/position_statement_final_endorsed.pdf https://www.aapm.org/org/policies/documents/EffectiveDose_FAQ.pdf

Contemporary issues in radiation protection in medical imaging: BJR Sept 2021 https://www.birpublications.org/toc/bjr/current

Recurrent Imaging and CED¹

- General threshold discussed is > 100 mSv
- Recent reports in adults vary:
 - "0.6-3.4%"
 - "Up to 1.9%"
 - "0.5%"
- Children:
 - "0-0.08%"
- In adults and children, oncology population most often
- In children, migration of imaging to MR and US
- "Bang for the buck"?


Recurrent Imaging and CED and

- What above and beyond current RP requirements and recommendations?
- Investment in designing guidelines for situations where recurrent imaging is likely: beyond current justification?
- Use at the individual patient point of care?

"There is no simple or uniformly applicable approach to these challenging and often nuanced clinical decisions. The complexity and variability of the underlying disease states and trajectories argues against alerting mechanisms based on a simple cumulative dose threshold.

Awareness of imaging history may [encourage] physicians and patients to ... identify those populations of frequent flyers that might benefit from alternative imaging strategies."

<u>https://postermuseum.com/collections/rock-</u> music/products/the-beatles-abbey-road-crossing-753

- U.S. doses have fallen
- Monitoring impact: attribution?
- Opportunities and challenges with how to do this, avoiding...

He say, "one and one is three"

https://mccartney.com/?p=16520

