

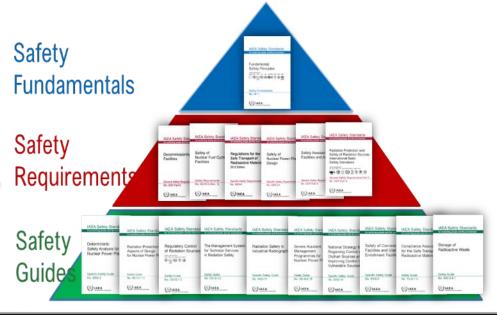
TRACKING RADIATION EXPOSURES FROM MEDICAL DIAGNOSTIC PROCEDURES

IAEA Perspective

Jenia Vassileva, PhD

Radiation Protection of Patients Unit International Atomic Energy Agency, Vienna, Austria

- IAEA is the world's central intergovernmental forum for scientific and technical cooperation in the nuclear field
- 173 Member States
- Headquarter in Vienna, Austria

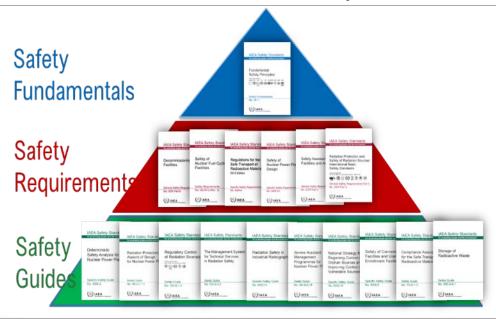

IAEA Statutory role

IAEA establishes standards of safety for protection of health ..., and provides for the application of these standards

UNSCEAR studies ICRP provides recommendations effects of atomic radiation for protection SOURCES AND EFFECTS OF IONIZING RADIATION Annals of the ICRP ICRP Publication 103 The 2007 Recommendations of the International

IAEA establishes safety standards

IAEA Statutory role



IAEA establishes standards of safety for protection of health ..., and provides for the application of these standards

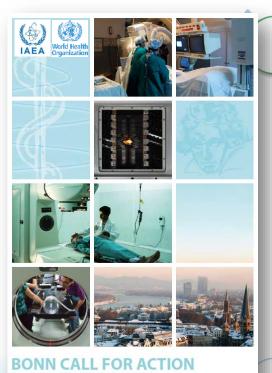
- All Safety Standards go through a formal process of Member State comments
- Reflect the international consensus

IAEA establishes safety standards

Radiation Protection in Medical Uses

International Basic Safety Standards (GSR Part 3)

- Published 2014
- Set basic requirements for protection and safety
- Co-sponsored by 8 international organizations



Safety Guide SSG-46: Medical uses of IR

- Published October 2018
- •Jointly sponsored by IAEA, WHO, PAHO, ILO
- •Cooperation in developing from international/regional professional organizations: IOMP, ISR, ISRRT, WFNMB, ESTRO

Radiation Protection in Medical Uses

in Medicine in the Next Decade

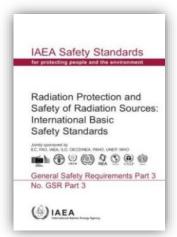
Safety Standards

Trainings

Guidance

Knowledge exchange

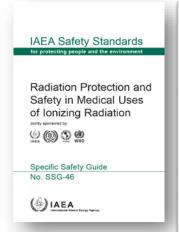
Technical assistance


Building awareness

Technical Meetings and Consultancy Meetings:

- A formal consultation on topics that need further consideration
- Member States and relevant stakeholders invited to nominate representatives
- Perspective of all regions/
 Member States considered

Medical exposure of patients



- Dose limit do not apply to medical exposure of patients
- Effort towards improved justification and optimization of radiation protection for each patient exposure
 - 3.157. The justification of medical exposure for an individual patient shall be
 - carried out by means of consultation between the radiological medical practitioner
 - and the referring medical practitioner, as appropriate, with account taken, in
 - particular for patients who are pregnant or breast-feeding or are paediatric, of:
 - (a) The appropriateness of the request;
 - (b) The urgency of the radiological procedure;
 - (c) The characteristics of the medical exposure;
 - (d) The characteristics of the individual patient;
 - (a) Delevent information from the nationt's provious radialogical

Medical exposure of patients

- 3.144. In determining the appropriateness of the radiological procedure for **an individual patient**, the following questions should be asked by the referring medical practitioner:
- Has it already been done? A radiological procedure that has already been performed within a reasonable time period (depending on the procedure and clinical question) should not be repeated (unless the clinical scenario indicates the appropriateness of repeating the procedure). The results (images and reports) of previous examinations should be made available, not only at a given radiology facility but also for consultation at different facilities. Individual patient exposure records should be used to facilitate the decision making process if available. Digital imaging modalities and electronic networks should facilitate this process.
- (b) Is it needed? ...
- (c) Is it needed now? ...
- (d) Is this the best investigation to answer the clinical question?...
- (e) Has the clinical problem been explained to the radiological medical practitioner? ...
- 3.142. The patient should be informed about the expected benefits, risks and limitations of the proposed radiological procedure, as well as the consequences of not undergoing the procedure

Medical exposure of patients

Optimization of protection and safety: In diagnostic and interventional medical exposure, keeping the exposure of patients to the minimum necessary to achieve the required diagnostic or the minimum the content of the

- Appropriate medical radiological equipment and software
- Appropriate techniques and parameters
- Calibration
- Diagnostic reference levels
- Local dose assessments to compare to DRL
- Review to determine whether optimization is adequate

The justification and optimization process can be facilitated through the use of digital hospital information systems and their integration.

New IAEA Safety Report

SAFETY REPORT SERIES No. XX

PATIENT RADIATION EXPOSURE MONITORING IN MEDICAL IMAGING

s Series No

Please note: This is a final draft version many available as a preprint advance publishing copy for reference only. This version may contain errors and is not the official LAEA publication. Consistent with the relevant terms of use, the LAEA does not make any warranties or representations as to the accuracy or completeness of this version. To cite this preprint please include 'preprint in the full reference. Any quotations or other information taken from this copy may change in the final publication so please always check the official published version. When it is released a link will appear in the preprint record and will be available of the LAEA publications website. The terms of use of this preprint are the same as those for the LAEA publications – free to read but preprints may not be translated. More information is available at www.iaca.org/publications.

REPRIN

Patient radiation exposure monitoring goals:

- Ensuring optimised radiation protection and consistent practice of medical imaging
- Ensuring safe and precise imaging of individual patients
- Supporting the process of justification and appropriateness
- Providing information on collective dose to population and trends

RECORDING

- Electronic recording of exposure data in standard objects (e.g. DICOM objects)
- Recording of single events in a unique object (DICOM Radiation Dose Structured Report, RDSR)
- Manual recording (handwriting when electronic means not available)

COLLECTING

- Collection of data from different dose objects (patients, X ray units/ modalities/ healthcare units/ regions/ countries/... according to specific schemes and templates, reflecting the purpose of data collection
- Manual collection when electronic means not available

ANALYSING AND REPORTING

- Statistical analysis (mean, median, ranges, quartiles,...)
- Trending analysis (per protocol, per size, per room,...)
- Tracking analysis (temporal changes,...)
- Population analysis (DRLs, collective doses, ...)
- Comparisons
- ·

Storing

 Dose objects sent to an archive to be permanently stored

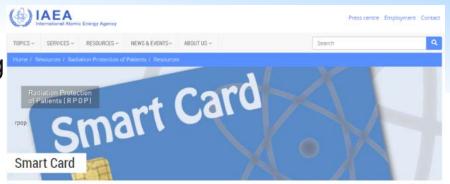
Storing

 A selection of data stored for further purposes

Storing

- · Results stored if needed
- Standard objects exist (i.e: DICOM Patient RDSR)

Patient exposure monitoring strategy



At population level (group of patients) For individual patients **Patient** Frequencies Patient data, procedure data and identification (number) of modality specific dose indices procedures (KAP, CTDI_{vol}, DLP, CD, PSD, ..), plus IQ indices (ID) DRL; Typical dose Organ doses Organ doses levels; Alert levels Effective dose Effective dose (or other risk index) (or other risk index) Referral guidelines, CDS, Optimization of patient Individual tracking for Population doses Justification; protection justification and (trends, comparison) Epidemiology, Research and imaging practice optimization

Patient exposure tracking

(A)

- IAEA Smart Card Project launched in 2009
- Aimed to develop a methodology for tracking radiation exposure history of patients
- Developed through series of consultations: TM 27-29 April 2009; CS 25-27 January 2010; TM18-21 October 2010; TM 30 Jan–1 Feb 2012; TM 23-26 September 2013; TM 28-30 April 2015
- Series of actions and publications:
 - survey to assess status of exposure tracking
 - survey on unique patient ID
 - survey with referring physicians
 - templates and models for tracking
 - case reports on use of tracking

e	S	0	u	r	C	e	S	

International Safety Standards

Publications

Posters and leaflets

Bonn Call for Action platform

Smart Card

Recurrent imaging

RELID Study

Training material

Online Training

> Databases and Learning

Medical imaging is a well-accepted, valuable clinical tool when appropriately utilized. In recent years, individual patient exposure from radiological procedures using ionizing radiation has been increasing, including procedures in children, in part due to multiple procedures resulting in cumulative effective dose estimations exceeding 50-100 mSv in some cases. This creates increased responsibility of authorities, manufacturers and health professionals to develop and implement suitable solutions. One such solution is the IAEA Smart Card/SmartRadTrack project, the major purpose of which is tracking of patient exposure history.

The smart card does not have dose information just as credit card has no cash or credit. The smart card represents a means by which one can access information on servers. The project is focused on tracking of individual patient's radiological procedures and dose rather than tracking of doses of group of patients.

Although the scope of the Smart Card project that was initiated by the IAEA in 2006 was comprehensive, it tended to give a narrow impression. Thus, the new name Smart Card/SmartRadTrack was adopted. The scope of patient radiation exposure tracking is to cover all imaging modalities which use ionizing radiation for interventional procedures and

Related resources

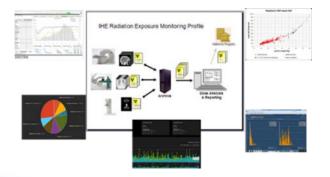
Smart Protection, Article on Smart Card, IAEA Bulletin (Vol. 50/2, May 2000)

https://www.iaea.org/resources/rpop/resources/smart-card

Patient exposure tracking

Joint Position Statement by 7 organizations issued in 2012

It is jointly agreed upon that:


- 1. Tracking of radiological procedures is useful (Annex).
- 2. Tracking is of particular interest for CT, interventional procedures and some nuclear medicine examinations that involve relatively higher doses.
- 3. Countries should consider including necessary provisions in their national requirements for patient radiation exposure tracking. Implementation must comply with relevant national privacy and confidentiality regulations.
- 4. The advances in picture archiving and communication systems (PACS) and other information technology, availability of radiation dose data in many imaging and image guided procedures in standardized radiation units and internationally harmonized formats, and increased utilization of electronic health records (EHR) provide evolving opportunities to successfully achieve increased coverage of both local and global patient radiation exposure tracking.

https://www.iaea.org/sites/default/files/documents/rpop/iaea-smart-card-position-statement.pdf

Improved access to data

- Standardisation of exposure data recording and presentation
- Wider implementation of REM systems:
 - modality-specific metrics
 - procedures/ dose tracking

Vassileva J, Holmberg O. Radiation protection perspective to recurrent medical imaging: what is known and what more is needed? Br J Radiol 2021; 94: 20210477

Author, year	Country/ region	Cohort (specific criteria, # patients, age group)	Type of procedures	Period of exposure history
Sodickson et al ⁷⁷	USA	31,462 patients, mean age 56.9 y in an academic medical center	CT	22 years
Fazel et al ⁷⁸	USA	952,420 nonelderly adults, mean age 35.6 y in five health care markets	All	3 years
Dorfman et al ⁷⁹	USA	355,088 children, mean age 9.0 y (0−18) y, in five health care markets	All	3 years
Lutterman et al ⁸⁰	USA	200 consecutive inpatients ≥ 18 y, mean 60.4 y, two academic hospitals	All	Single hospital stay
Bostani et al ⁸¹	USA	34,672 patients, academic hospital	CT	1 year
Lee et al ⁸²	Korea	13,803 children age <15 y In an academic hospital	CT	5 years
Stopsack et al ⁸³	USA	[td]	СТ	10 years
Lumbreras et al ⁸⁴	Spain	154,520 (68.8% of all patients) with ≥1 exam, 14% children < 15y	All	12 years
Rehani et al ¹⁴	USA, Europe	2,504,585 patients in 4 institutions with 324 hospitals	СТ	1–5 years
Brambilla et al ¹⁵ USA, 702,205 patients in 20 hospitals in 20 countries Asia, Africa			СТ	0.4–6.1 years

Conservative estimate:

Around 1 millions globally = 0.64% of all patients who undergo CT exams cumulate ≥100 mSv

	Arellano et al ⁸⁹	USA	8,952 who had CED ≥100 mSv in an academic hospital			
	Li et al ⁹⁰	USA	25,253 patients, mean age 58.2 (≥18 y), academic hospital	FGI	109 months	
	Jeukens et al ⁹¹	Netherlands	49,978 patients, median age 62 (0-103), academic hospital	CT	Maximum 5 years	
	Frija et al ⁹²	Europe	1,218,429 patients from 18 hospitals in Europe	CT	4 years	
	Rehani et al ⁹³	USA	3,880,524 patient-days, mean age 57.8 y in 279 USA hospitals	CT	5 years	
Brambilla et al ²⁵ Italy 28,870 patients, tertiary care cer		28,870 patients, tertiary care center	CT	2.4 years		

IAEA Technical Meetings on recurrent imaging

IAEA TM on Radiation Exposure of Patients from Recurrent Radiological Imaging Procedures,

4-6 March 2019, Vienna

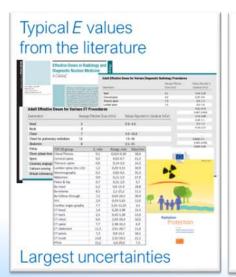
and DITTA

53 participants representing 26 IAEA MSs and 9 international organizations and professional bodies: ICRP, WHO, UNSCEAR, ISR, ISRRT, IOMP, ESR, Image Gently, IAEA TM on the Justification and Optimization of Protection of Patients Requiring Multiple Imaging Procedures, 19-23 October 2020, online

93 participants representing
32 Member States and 13 international
organizations and professional bodies:
ICRP, WHO, UNSCEAR, EC, HERCA, FDA,
ISR, ISRRT, IOMP, ESR, EFOMP, Image
Gently, and DITTA

Reports available from: https://www.iaea.org/resources/rpop/resources/recurrent-imaging

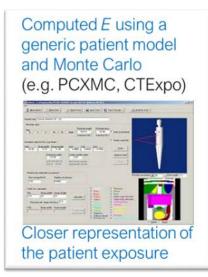
IAEA Technical Meetings on recurrent imaging

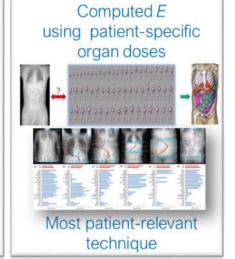

- Represented clinical and radiation protection perspectives
- Reviewed the epidemiological data of cancer risk
- ICRP: Radiation dose and risk from a justified and optimized procedure are negligible to low
- If multiple procedures are performed to the same individual, cumulative effective dose, as well as equivalent dose to some tissues/ organs may exceed 100 mSv
- Risk classified as "moderate" (ICRP)

			CRP Publication 147, 2021
Effective dose (mSv)	Risk of cancer	Proposed term for dose level	Examples of medical radiation procedures within different dose categories [‡]
<0.1	Inferred <10 ⁻⁵ on LNT model	Negligible	Radiographs of chest, femur, shoulder limbs, neck, and teeth; ^{99m} Te sentinel node imaging; radionuclide labelling for in-vitro counting with ¹⁴ C and ⁵⁷ Co.
0.1-1	Inferred 10 ⁻⁵ –10 ⁻⁴ on LNT model	Minimal	Radiographs of spine, abdomen, pelvis, head, and cervical spine; radionuclide labelling for in-vitro counting with ⁵¹ Cr; ^{99m} Tc for imaging lung ventila- tion and renal imaging.
1–10	Inferred 10 ⁻⁴ –10 ⁻³ on LNT model	Very low	Barium meals; CT scans of the head and combinations of chest, abdomen, and pelvis; barium enemas; cardiac angiography; interventional radiology; 99mTc myocardial imaging; lung perfusion; 99mTc for imaging lung perfusion; 99mTc imaging of bone lesions; cardiac stress tests; 99mTc SPECT imaging; imaging with ¹⁸ F, ¹²³ I, and ¹¹¹ In.
10-100	Risk 10 ⁻³ -10 ⁻² based on LNT model and epidemiology [†]	Low	CT scans of chest, abdomen, and pelvis; double CT scans for contrast enhancement; interventional radiology; ⁶⁷ Ga tumour and ²⁰¹ Tl myocardial imaging; multiple procedures to give doses of 10s mSv; endovascular aneurysm repair (10–35 mSv). Renal/visceral angioplasty; iliac angioplasty; follow-up of endovascular
100s	>10 ⁻² based on epidemiology [†]	Moderate	Multiple procedures and follow-up studies.

Patient exposure from recurrent imaging

- Data interpretation is complicated by the lack of standardization of the methods for estimation of effective dose and lack of patient-specific organ dose estimation.
- Since different methods do not result in identical estimates, the Evalues should be compared with caution

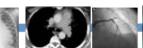

Computed *E* using modality-specific conversion factors


$$E_k = CF.F$$

F - modality specific metrics (DLP in CT or KAP in radiography/ fluoroscopy

CF – tabulated factor based on modelling of the patient by reference models

Ignores patient's habitus and irradiation field



Patient exposure from recurrent imaging

Various studies with over 11 million patients tracked from hospitals in USA, Italy, France, Belgium, UK, Netherlands, Spain, Finland, Slovakia, Bulgaria, Croatia, Lithuania, Korea, Japan, UAE

- From <0.1 % to 15% of patients with CED>100 mSv
- Between 3 and 40 % aged under 50
- Between 9.6 and 69 % with no malignancy or cancer history but no active disease

Although varying due to local specifics or disease prevalence, these studies indicate the general pattern and call for attention

Joint Position Statement

- Published in May 2021 jointly by 9 organizations
- Purpose: To guide processes such that patients with medical conditions which prompt more frequent imaging procedures receive needed medical care, without undue exposure to ionizing radiation.

JOINT POSITION STATEMENT AND CALL FOR ACTION
FOR STRENGTHENING RADIATION PROTECTION OF PATIENTS UNDERGOING
RECURRENT RADIOLOGICAL IMAGING PROCEDURES

This Position Statement was developed by the International Atomic Energy Agency (IAEA) jointly with the European Federation of Organizations for Medical Physics (EFOMP), European Society of Radiology (ESR), Global Diagnostic Imaging, Healthcare IT and Radiation Therapy Trade Association (DITTA), Heads of European Radiological Competent Authorities (HERCA), Image Gently Alliance, International Organization for Medical Physics (IOMP), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT), in collaboration with the World Health Organization (WHO).

Joint Position Statement

It is recognized that additional actions are needed to:

- Assess the level of recurrent radiological imaging and associated radiation doses
- 2 Identify clinical conditions where recurrent radiological imaging is likely to lead to relatively high cumulative doses in patients
- 3 Develop strategies for radiological imaging in clinical conditions that require recurrent imaging
- 4 Ensure justification and appropriateness of the entire series of radiological procedures for a patient
- **5** Monitor radiation exposure history of patients
- 6 Further reduce doses through technological developments
- Customize imaging protocols to address each patient clinical problem
- 8 Strengthen radiation protection education and training of health professiona
- Strengthen communication

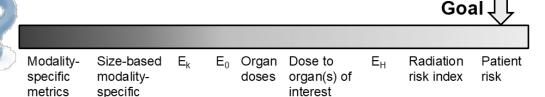
https://www.iaea.org/resources/rpop/resources/recurrent-imaging

Tracking patient exposure history

① What to track?

• Procedures (imaging records)

Date Exam Where Exam Performed



Patient dose

metrics

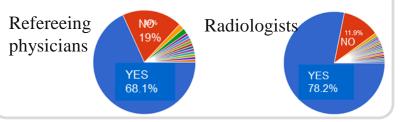
- -For procedures with risk for tissue reaction: cumulative skin dose
- -For procedures with risk for stochastic risk: patient-oriented risk metrics

Further standardisation needed of the methods for these estimates accounting for uncertainties

Task Group 113

Reference Organ and Effective Dose Coefficients for Common Diagnostic X-ray Imaging Examinations

Tracking patient exposure history



Radiology staff? Referring physicians? Patients?

- Concern about misuse and misinterpretation by referring physicians and patients
 (e.g. Walsh C, et al, Eur Radiol. 2020;30(8):4434-37)
- Resource-constrained, value depending on healthcare and RP systems
 (Martin C, Barnard M, J Radiol Prot. Oct 2021)
 - User groups of REM systems and their access level should be carefully considered to ensure proper use
 - Education and training crucial

IAEA Surveys (2020, IAEA)

387 physicians from 65 countries If you know radiation exposure history of patient, will it affect your decision making the next exam?

Graff J, Patient perspectives on radiation dose.

RadProtDosimetry 2015 165(1-4):25-9
Survey with 199 replies (USA, UK)
"If patients can be given a good way to track cumulative exposure, they will feel some additional level of control."

Example: Actions in Europe

European Radiology https://doi.org/10.1007/s00330-021-07696-1

COMPUTED TOMOGRAPHY

Cumulative effective dose from recurrent CT examinations in Europe: proposal for clinical guidance based on an ESR EuroSafe Imaging survey

Guy Frija 1 • John Damilakis 2 • Graciano Paulo 3 • Reinhard Loose 4 • Eliseo Vano 5 • European Society of Radiology (ESR) 6

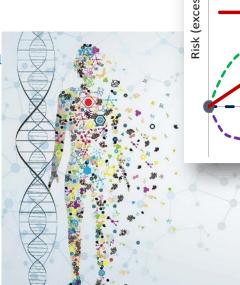
Table 4 How to reduce the number of recurrent examinations?

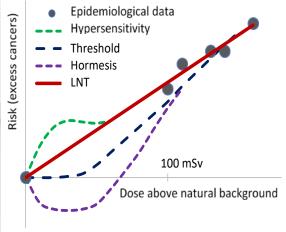
Having discussions with the physician requester

- ✓ Highlighting the potential risk/benefit of recurrent examinations
- ✓ Discussing whether decreasing the number of exams and/or replacing CT with MRI or Ultrasound would be possible
- ✓ Informing them that they would be provided with the cumulative dose for each patient having recurrent CT examinations

Developing actions

- ✓ Establish the list of clinical situations where recurrent CT examinations are undertaken in the institution
- √ CT Protocol optimisation to perform the procedure at the lowest dose for the clinical indication
- √ Involve the radiographers and the medical physicists of the
 department and increase awareness
- ✓ Set a dose tracking system for these patients, ideally integrated into the electronic health record
- ✓ Provide the physician requester with feedback on the cumulative dose reached for each concerned patient in order to constantly update the benefit—risk estimation
- √ Set-up an internal audit focused specifically on patients undergoing recurrent examinations
- ✓ Develop localised guidelines on patient follow-up when the CED \geq 100 mSv




Improved access to data

Strengthening research studies of low-dose effects from medical exposure

- Improved epidemiological studies:
 - -Improved access to patient-specific organ doses,
 - -linked to patients health records,
 - while accounting for reverse causation and confounding factors.



Focus on patient safety

- The Joint Position Statement was intended to prompt greater dialogue
- The risk to benefit analysis must account in holistic for all incidental and long-term benefits and risks for patients, their clinical history and specific needs
- This is a step toward the patient-centric healthcare

