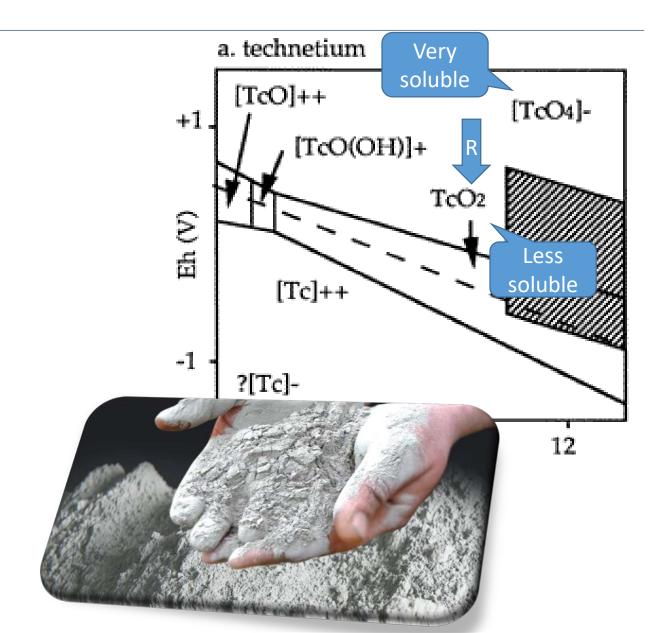
National Academies of Sciences – Supplemental LAW Options

Phase 2

Maxwell Woods
Jeff Burright
Oregon Department of
Energy

FFRDC General Findings of the Prior Study

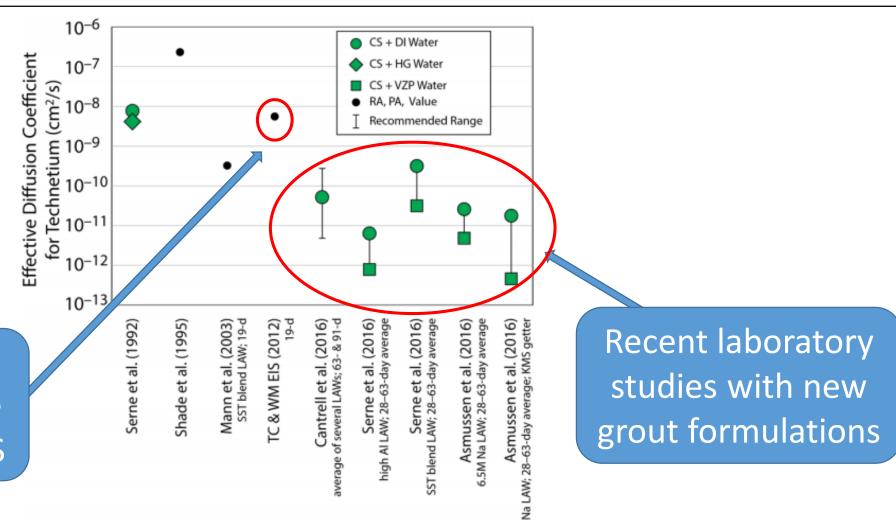
- The FFRDC believes that grout can meet performance objectives for **onsite or offsite** disposal, without removing Tc-99 or I-129.
- Additional R&D is needed before implementing grout for Hanford.
- Compared against vitrification, grout is less complicated* (room temperature process).
- Compared against vitrification, grout produces less secondary waste (i.e., glass offgas effluents, which would be grouted anyway).
- Grout requires more disposal space than glass, but capacity is available.
- Grout is estimated to be significantly cheaper than glass.
- A near-term decision is needed for Supplemental LAW to guide investment, but there is inadequate funding no matter the option chosen.


FFRDC General Findings of the Prior Study

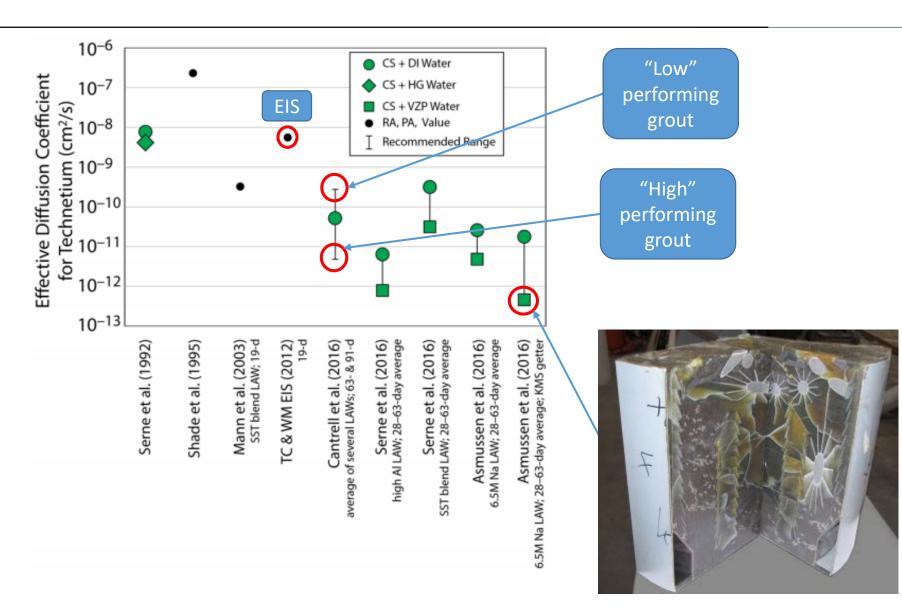
- The FFRDC believes that grout can meet performance objectives for onsite or offsite disposal, without removing Tc-99 or I-129.
 - Additional R&D is needed before implementing grout for Hanford.
 - Compared against vitrification, grout is less complicated* (room temperature process).
 - Compared against vitrification, grout produces less secondary waste (i.e., glass offgas effluents, which would be grouted anyway).
 - Grout requires more disposal space than glass, but capacity is available.
 - Grout is estimated to be significantly cheaper than glass.
 - A near-term decision is needed for Supplemental LAW to guide investment, but there is inadequate funding no matter the option chosen.

What's so special about new grout?

- Cast Stone (grout) is the same formulation now as was assumed in the 2012 Tanks EIS.
 - EIS: 8.2% Portland Cement, 44.9% fly ash, 46.9% blast furnace slag.
 - BUT! The EIS used leaching data based on grout <u>without</u> blast furnace slag.
- Blast furnace slag is a strong reductant.
- In its chemically <u>reduced</u> state, Technetium becomes insoluble and less mobile
- Reduced environments do not appear to slow down iodine.

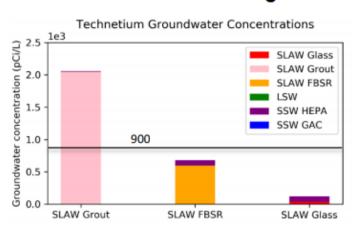

Sensitivity Cases

- Three sensitivity cases (waste release rate) for each waste form
 - Low performing based on range from laboratory testing
 - High performing based on range from laboratory testing
 - Projected best case based on the highest performance from laboratory testing (includes "getters" and likely requires additional study to assure results can be consistently obtained)

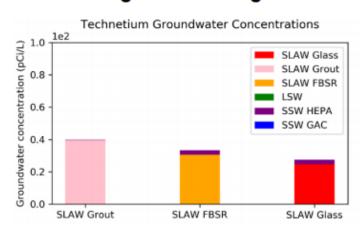

Grout performance changes

2012 Tank Closure & Waste Management EIS

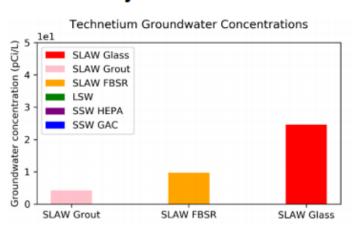
Grout performance changes


Source: NAS May 2019 meeting, FFRDC presentation

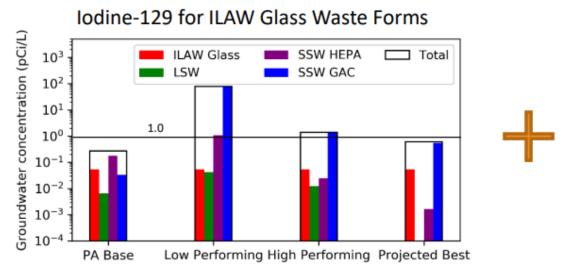
Source: NAS May 2019 meeting, FFRDC presentation

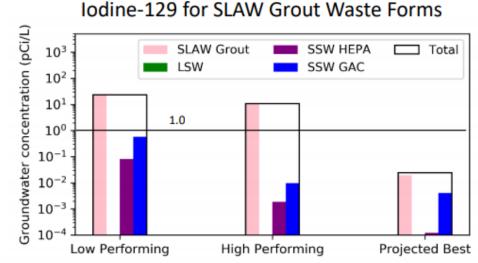

Projected Peak Groundwater Concentrations for All Cases

Tc-99

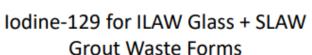

Low Performing

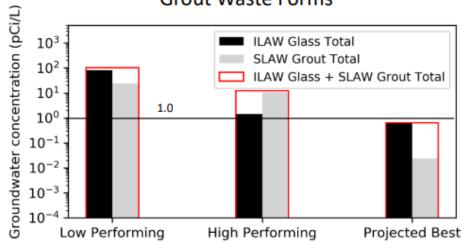
High Performing


Projected Best



Translation:


Grout at Hanford is protective of groundwater for Tc-99 under "High Performing" and "Projected Best" case performance.


Performance Evaluation Results – Cumulative Groundwater Impacts

Translation: Grout at Hanford is only protective of groundwater for lodine-129 under the "Projected Best" case grout performance.

Oregon's Review of the Phase 1 NAS Hanford SLAW Options Study

https://tinyurl.com/ORSLAW2019

Oxidizing LDR Treatment (organics)

Previously
analyzed
technology
doesn't treat all

Prevalence in tank waste uncertain

Getters

(I-129 and maybe Tc-99)

\ "very low TRL"

Ge

Long-term

Getter selection stability? not settled

Multi-Getter conflicts RCRA (Tc-99 vs. I-129) regulated?

)

Redox compatibility?

Onsite grout disposal "acceptable"

Redox

compatibility?

Redox

compatibility?

Sulfur interference?

Degradation over time?

Tc-99 migration to surface of monolith – good or bad?

Defensible conceptual model of performance mechanism needed

IDF PA sensitivity cases (e.g., early cap failure)

Degradation/ reoxidation rate?

Reducing grout formula (Tc-99)

Is a No-SLAW future possible?

- DOE Glass Scientist predicted future LAW melters will be more efficient.
 - 15 metric tons/day → 50 MTD if we remove unnecessary refractory liner.
 - Increasing crystallization tolerance in glass from 1% to 1.5% would reduce the mission by 20%
 - A system model from the contractor in 2013 predicted no need for Supplemental LAW if a 3rd melter is added to the existing LAW facility.
 - A new 2020 glass formulation model predicts no need for Supplemental LAW.
 - How optimistic are we?

Put the "bad actors" in a smaller package?

- Getters vs. pretreatment it's all about location!
- Technology reportedly exists to separate Tc-99 and I-129, but more information needed.
- Mitigates uncertainty about getter interactions and long-term performance
- Manages uncertainty that offsite disposal may fall through after grout investments
- Potentially enables onsite disposal of more benign grouted waste form
- "As good as glass" comparability

Whither Nitrate and Nitrite?

- Assessments from 90s Hanford grout program concluded that the key obstacles for grouted waste at Hanford weren't limited to Tc-99 and I-129, but also nitrate and nitrite
- Nitrite is an "extremely hazardous waste" per WA statute.
- Prior FFRDC report qualitatively acknowledges value of nitrate destruction via thermal processes (vitrification or steam reforming)
- IDF Performance Assessment does not calculate nitrate/nitrite to groundwater from primary LAW (it's destroyed in vitrification!)
- No Performance Evaluation performed in prior FFRDC report for nitrate/nitrite like was performed for Tc-99 and I-129.

IDF Risk Budget Tool (2020)

- Built on the same model as the IDF Performance Assessment to allow budgeting of total inventory that may be disposed in IDF without surpassing drinking water MCLs.
- Risk Budget Tool provides estimates for "ETF Liquid Secondary Waste" as closest analogue to SLAW.
- Nitrate: maximum disposal limit = 5.86 million kg
 - Total NO3 in tank waste = **56 million kg**. 40% for SLAW = **20-22M kg**
 - Tool doesn't take into account the existing nitrate plume under IDF
- Nitrite: maximum disposal limit = 435,000 kg.
 - BBI for nitrate -11.8 million kg. 40% for SLAW = 4.72 million kg

