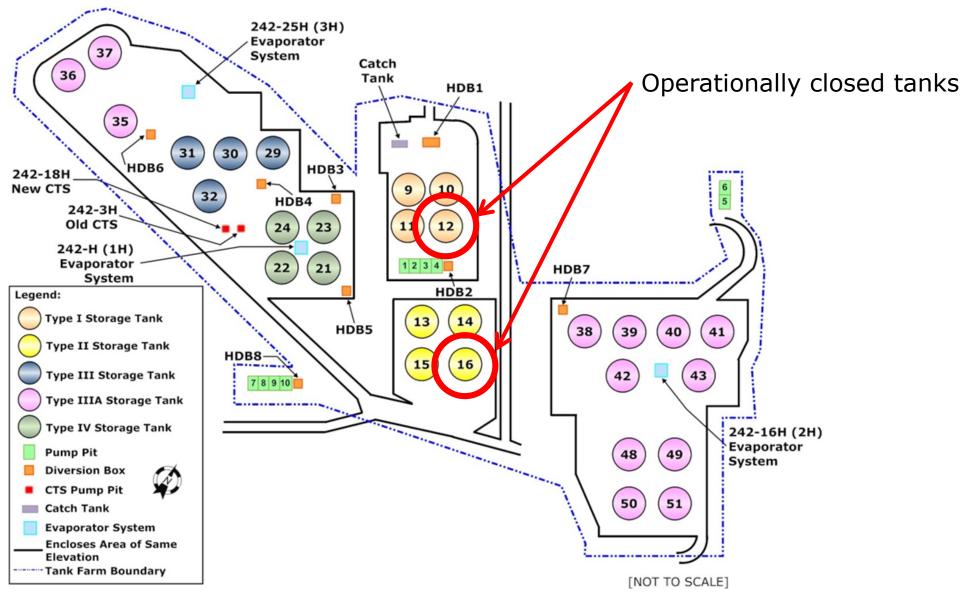
Savannah River Site Experience With Groundwater Protection Standards

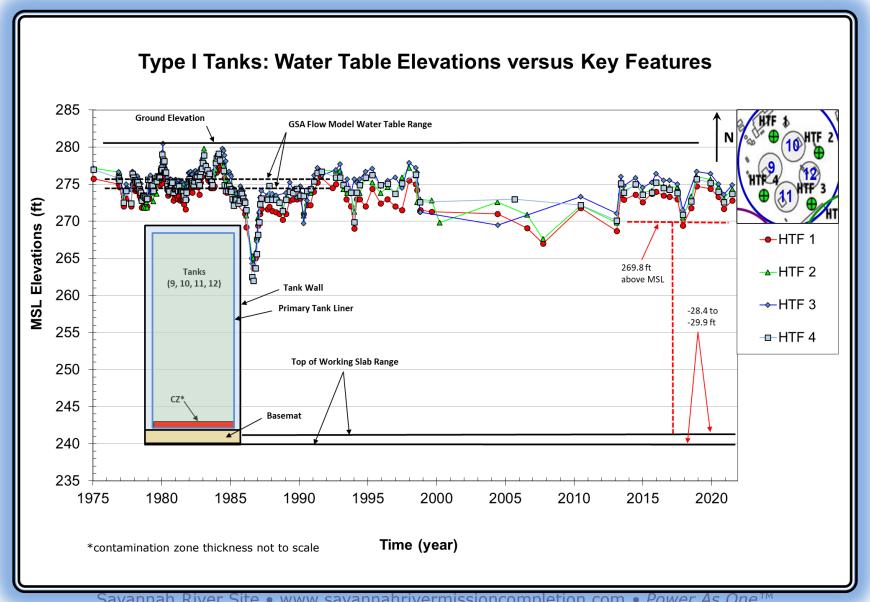
Kent Rosenberger

April 26, 2022

Background

- Savannah River Site has 51 total tanks
- Eight tanks have been operationally closed to date
- Evaluations completed in preparation for closure of two tanks in H-Area Tank Farm indicated that Safe Drinking Water Act Maximum Contaminant Levels (MCLs) were met within 1,000 years following area closure but were exceeded for certain radionuclides within 10,000 years
- Data was examined relative to modeling approaches and the bases for the MCL doses and alternate information presented
- Department of Energy, South Carolina Department of Health and Environmental Control and Environmental Protection Agency Region IV approved closure action


H-Area Tank Farm


H-Area Tank Farm

H-Area Tank Farm

Closure Evaluation Results

- Results documented in the Special Analysis in preparation for closure of Tank 16 in H-Area Tank Farm indicated concentrations of I-129 and Tc-99 over the MCLs within 10,000 years following closure
- Special Analysis discussed modeling approaches and bases of the MCLs in evaluating overall risk to human health
 - Pessimistic assumptions made related to iodine retention in the residual material
 - MCL criteria of 4 mrem/yr from beta-gamma emitters is derived from consuming 2 liters of water per day from potentially contaminated source and using dose conversion factors from late 1950s

Pessimistic Assumptions

- Predictive modeling necessitates making decisions on modeling parameters especially when evaluating time periods many thousands of years in the future
- Pessimistic values are often chosen due to ease of their defense to stakeholders or due to lack of detailed understanding of system performance in the future
- Variable modeling parameters can include:
 - Water infiltration rates through engineered closure caps
 - Material degradation rates and modeling values especially related to cementitious material fluid movement and chemical conditions
 - Human receptor behaviors
 - Climate change

Water Consumption

- Basis for approximately 2 liters/day often attributed to military field operations planning not necessarily typical member of the public consumption of well water
- Typical water consumption is a value that has and will vary over time influenced by factors such as bottled water and other liquid consumption
- The Environmental Protection Agency's Exposure Factors
 Handbook is excellent source of data on water
 consumption and is updated as new data is available and
 evaluated
- Latest water consumption data from Chapter 3 was issued in 2019: https://cfpub.epa.gov/ncea/efp/recordisplay.cfm?deid=343661

Water Consumption

- Water consumption for your particular site applications should consider:
 - Sources of water such as community water supply or bottled water
 - Adjustments for various activity levels and occupational differences
 - Adjustments for United States regional consumption data
- Savannah River Mission Completion (SRMC) established a compliance case water consumption rate of 1.595 liters/day based on current information and our specific adjustments

Details of the MCLs

- Radionuclide Maximum Contaminant Level for beta/photon emitters is 4 mrem/yr
- Discussion is related to how that 4 mrem/yr concentration limit is calculated
- Current derived concentrations for 179 radionuclides to yield 4 mrem/yr are presented in EPA 815-R-02-001 as calculated from National Bureau of Standards Handbook 69 from 1959
- Concentration for I-129 is 1 pCi/liter and for Tc-99 is 900 pCi/liter
- Already discussed water consumption rate differences so let us discuss dose conversion factors

Dose Conversion Factors

- Understanding of potential organ and body impacts of various radionuclides has increased greatly since 1959 and more information continues to be learned
- In 1991 Environmental Protection Agency proposed new concentrations for radionuclides to meet the 4 mrem/yr limit based on knowledge at that time: https://www.govinfo.gov/content/pkg/FR-1991-07-18/pdf/FR-1991-07-18.pdf
- I-129 proposed concentration changed from 1 pCi/liter to 21 pCi/liter
- Tc-99 proposed concentration changed from 900 pCi/liter to 3790 pCi/liter
- 1991 concentrations were not adopted following public comments but illustrate dose conversion factor changes

Dose Conversion Factors

- As previously stated, the dose conversion factors change as our knowledge changes
- Current Department of Energy factors (also called dose coefficients) are presented in DOE-STD-1196-2021: https://www.standards.doe.gov/standards-documents/1100/1196-astd-2021
- PNNL-30466, Evaluation of Dose- and Risk-Based Groundwater Cleanup Levels for Low Energy Beta Radioisotopes, issued in September 2020 provides an excellent history of changes in data and examples specific to possible uses for Hanford cleanup situations: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-30466.pdf
- Recommend reading this report to gain perspective on risk assessments

Examples

 Dose consequences for I-129 of 1 pCi/liter using SRMC compliance case water consumption and DOE standard dose coefficients:

$$1 \frac{pCi}{liter} \left(\frac{1.595 \ liters}{day}\right) \left(\frac{365.25 \ days}{year}\right) \left(\frac{3.57E - 4 \ mrem}{pCi}\right) = 0.21 \frac{mrem}{year}$$

 Dose consequences for Tc-99 of 900 pCi/liter using SRMC compliance case water consumption and DOE standard dose coefficients:

$$900 \frac{pCi}{liter} \left(\frac{1.595 \ liters}{day}\right) \left(\frac{365.25 \ days}{year}\right) \left(\frac{5.25E - 7 \ mrem}{pCi}\right) = 0.28 \frac{mrem}{year}$$

Conclusions

- When performing environmental evaluations it is vital to understand:
 - Modeling parameters and the impact of decisions on results
 - Context of time period of peak results following site closure
 - Basis of radionuclide standards or limits you are comparing to in order to fully understand potential risk
 - Current human habits and science to fully appreciate risk significance of modeling results
- Discuss your results and the potential risk with your regulators and stakeholders so everyone has a full appreciation for what the modeling results are telling us in order to make well informed decisions