

Laboratoires Nucléaires Canadiens

Reflections on research accomplishments and a look to the future

Edouard Azzam

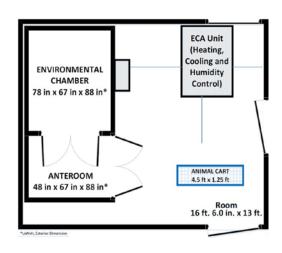
With support from the DOE Low Dose Radiation Research Program 1998 - 2011

Awards

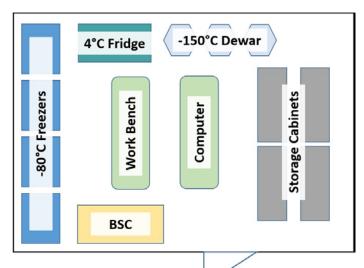
- DE-FG02-98ER62685 (PI: J.B. Little/co-I: E.I. Azzam)
 - Generated direct evidence for a role of junctional communication and oxidative metabolism in expression of bystander effects in human cell cultures exposed to low fluence α particles
- DE-FG02-02ER63447 (PI: E.I. Azzam)
 - Generated evidence for up-regulation of antioxidant defense in expression of adaptive responses in human cells exposed to low dose γ rays delivered at low dose rate.
 - Showed that gene expression and mitochondrial function are differentially regulated in human cells exposed to low dose vs. high dose γ rays
- DE-FG02-05ER64050 (PI: D.R. Spitz/co-PI: E.I. Azzam)
 - i) Showed a prominent role for succinate dehydrogenase (mitochondrial respiratory complex II) in overall responses to low dose γ rays;
 - ii) Showed that the metabolic enzyme 'aconitase' is a sensitive marker of the radiation response
- DE-FG02-07ER64344 (PI: E.I. Azzam)
 - i) Discovered a new player (TCTP) in DNA repair (highly sensitive to low dose/low dose rate);
 - ii) showed that protection against *in vivo* exposure to low dose γ rays is associated with decrease in mitochondrial function;
 - iii) Showed that partial oxygen tension (pO₂) is an important regulator of cellular responses

Output: selected publications

- Azzam EI et al. (2000) High and low fluences of α -particles induce a G_1 checkpoint in human diploid fibroblasts. Cancer Res., **60**, 2623-2631.
- Azzam EI et al. (2001) Direct Evidence for the participation of gap-Junction mediated intercellular communication in the transmission of damage signals from α -particle irradiated to non-irradiated cells. *PNAS* **98**, 473-478.
- Azzam El et al. (2002) Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from α -particle-irradiated normal human fibroblast cultures. Cancer Res. 62, 5436-5442.
- Azzam EI, de Toledo SM, Little JB (2003) Expression of *CONNEXIN43* is highly sensitive to ionizing radiation and other environmental stresses. *Cancer Res.* **63**, 7128-7135.
- Spitz DR et al. (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer & Metastasis Reviews 23, 311-322.
- Pandey BN et al. (2006) Normal human fibroblasts exposed to high or low dose ionizing radiation: differential effects on mitochondrial protein import and membrane potential. Antioxidant & Redox Signaling, 8, 1253-1261
- de Toledo *et al.* (2006) Adaptive responses to low dose/low dose-rate γ -rays in normal human fibroblasts cultured in three-dimensional architecture: The role of oxidative metabolism. *Radiation Research.*, **166**, 849-857
- Venkatachalam *et al.* (2008) Regulation of Normal Cell Cycle Progression by Flavin-Containing Oxidases. *Oncogene*, **27**, 20-31.
- Azzam EI, Jay-Gerin J-P, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. *Cancer Letters*, **327**(1-2):48-60.
- Zhang J et al. (2012) Role of the Translationally Controlled Tumor Protein in DNA Damage Sensing and Repair. PNAS (Plus) 109(16):E926-33.

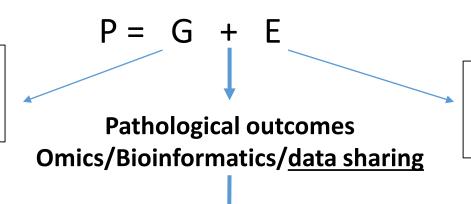

Implications of termination of DOE low dose program

- Work on low doses/low dose rates of sparsely ionizing radiation could not continue
- Training of medical students and radiology residents in projects involving low doses of radiation such as encountered in diagnostic procedures significantly curtailed
- Research program in the laboratory continued with support from
 - NASA to characterize mechanisms underlying the effects of protons and high atomic number (Z) and high energy (E) HZE particles
 - NCI to examine induction of non-targeted effects of radiation following exposure to therapeutic doses.
- \bullet Work on low fluence α particles such as from radon gas continued


2021: resumed work on low dose/low dose rate ionizing radiation at Canadian Nuclear Laboratories

- 30 m long 'Gamma Hall' located in SPF Animal Facility
- Cs-137: 605 μGy/h to 5.4 Gy/h
- Co-60: 76.4 μGy/h to 65.7 mGy/h
- Allows for acute & chronic exposures of live cell cultures and small animals (https://www.cnl.ca/facilities/biological-research-facility/)

Tissue Biobank:


- Securely store tissues and cultures derived from radiobiological studies
- Engage both national and international collaborations

The future: re-launch of 'low dose radiation research program' in the USA

- Contribute not only in reducing the uncertainty of predicting adverse health risk, but also whether low dose radiation can potentiate efficacy of disease treatments: immune modulation, regenerative medicine ...
- > Training of high quality personnel in occupational and educational settings
- ➤ Eminent factors (e.g., ↑ in nuclear power generation) are pressing for greater understanding of health outcomes of exposure to low dose ionizing radiation, and the communication of potential risk. To this end, an integrated research plan that addresses several variables is essential:

Genetic Susceptibilities
Males & females
Cells, animals, human organoids

Age at exposure, time after exposure, life style (diet, microbiome, ...), costressors, dose, dose-rate, LET

Identification of key pathways that impact health risk assessment & contribute, together with https://www.numen.com/human-epidemiology surveys, to generation of predictive dose response risk models