Advances in Understanding Cancer Evolution and Cellular Response to Radiation

Stephen J. Chanock, M.D.

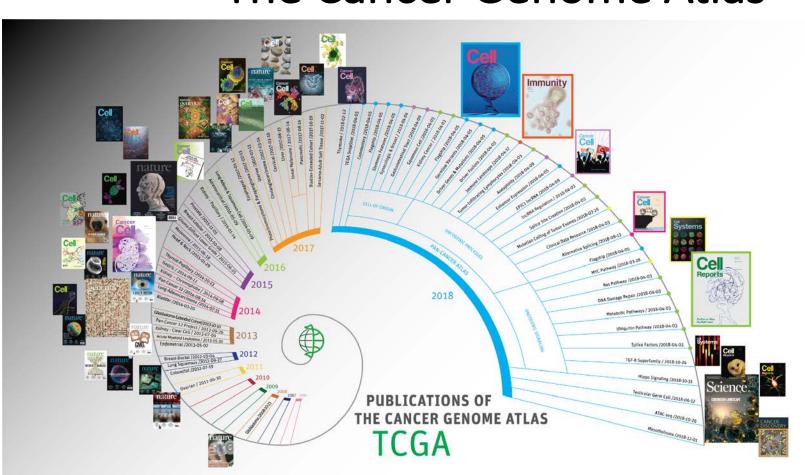
Director, Division of Cancer Epidemiology and Genetics

Questions in low dose radiation research: In search of radiation-damage biomarkers

- > Large-scale measurement of genomic profiles
 - Regions that confer susceptibility to radiation effects
 - Genomic landscape of radiation-related cancers
 - Epigenetic alterations
- Apply genomic technologies to robust radiation epidemiology studies
 - Study design
 - Strong Dosimetric data- KEY
- ➤ Informatic Pipelines & Data Sharing
 - Costly & always evolving.....
 - "Runaway costs"

Major Scientific Questions in Low Dose Radiation Research with Biospecimens

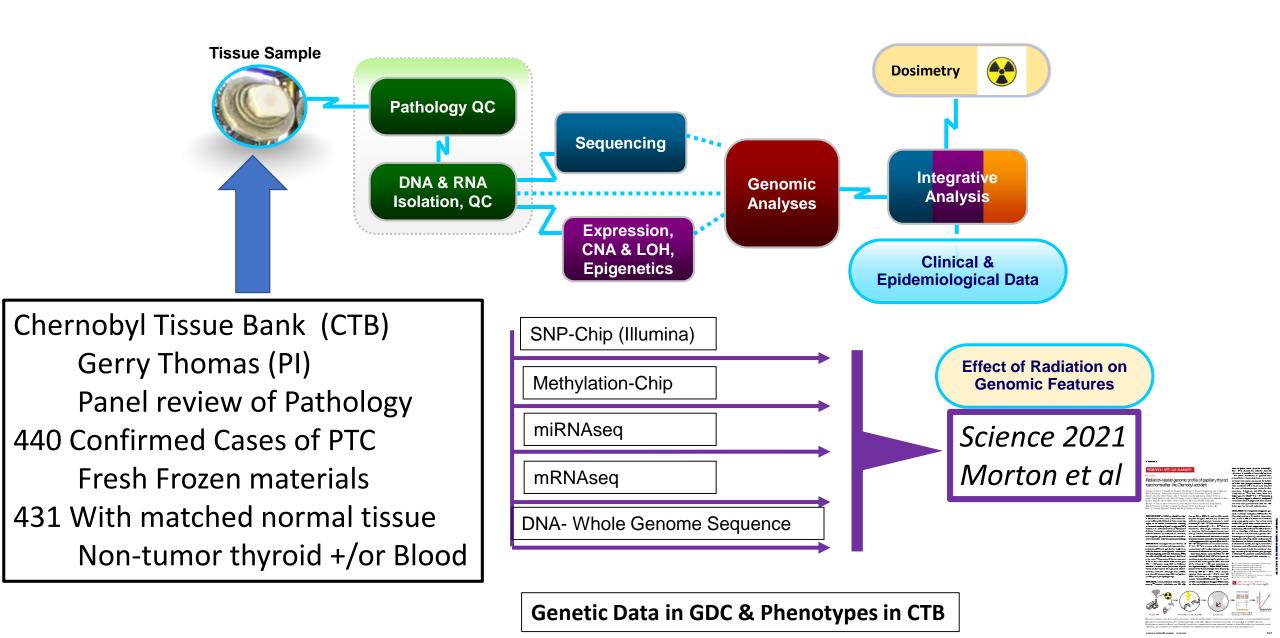
- Germline/Normal Tissue
 - O Are there regions of the genome that protect or confer enhanced effects?
 - Possible field effects in adjacent/normal tissue
 - Possible effect on background mutational rates in different tissues (CH & mosaicism)
- Somatic Alterations
 - Reliable predictive biomarkers for radiation injury
 - Exposed individuals
 - Transgenerational setting
 - New insights into how radiation causes cancer & other conditions
 - Cancer Genome Landscapes- RNA & DNA
 - Signatures of low dose radiation exposure?
 - Clonal Hematopoiesis accelerated by radiation exposure
- Epigenomic Events
- Circulating biomarkers of injury that predict risk
 - **O Proteomics**

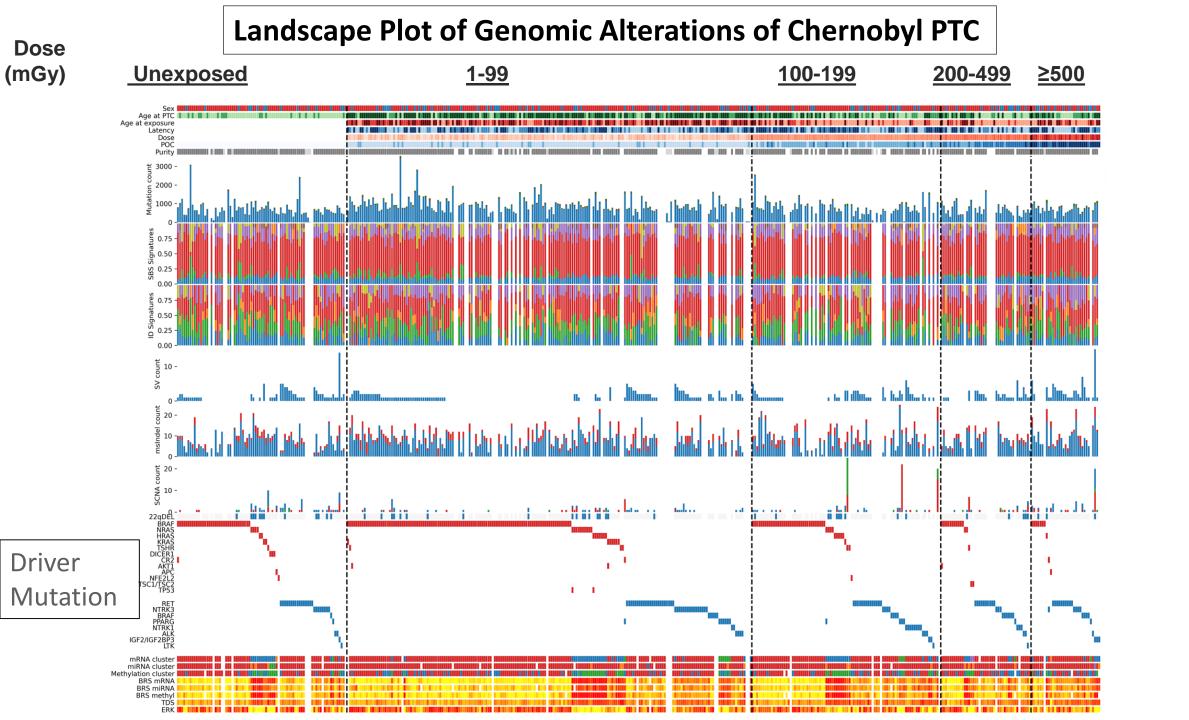

Current REB/NCI Low-dose Radiation Research: Value of Well-Designed Epidemiologic Studies with Dosimetry

Study	Key Collaborators
UK-NCI CT scans study	Univ of Newcastle
US Radiologic Technologists (USRT)	Univ of Minnesota
US interventional radiology physician cohort	AMA
Life Span Study	RERF
Ukrainian Trios Study	NRCRM
UkrAm (children & in utero)	IEM
BelAm (children & in utero)	RRCRM
Ukrainian liquidators case-control studies (thyroid/leukemia)	NRCRM
Chernobyl Tissue Bank	IEM
Low-dose pooling projects (leukemia/thyroid/brain cancer)	Multiple
UK Background radiation childhood cancer study	Univ of Oxford
Risk of Bias Assessment Methodology	IARC

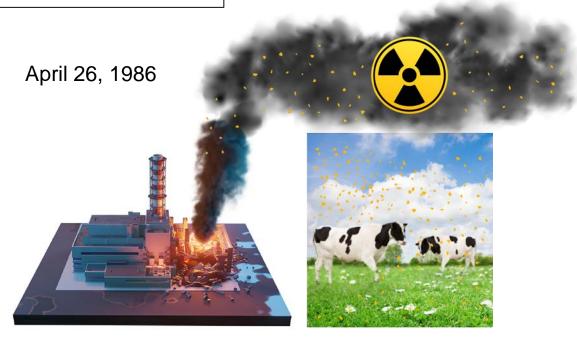
Substantive Impact on Understanding Cancer: Genomic Landscape Analyses The Cancer Genome Atlas

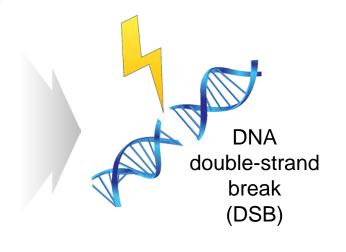
Integrated Analyses

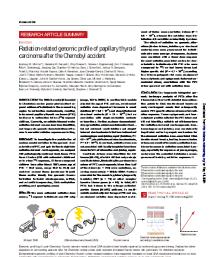

<u>Pipelines in place</u>

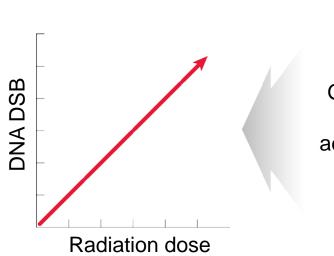

- 1. DNA Germline & Somatic
- 2. Transcriptomic Profile mRNA & miRNA
- 3. Epigenetics focused CpG islands
- 4. Proteomics*
- 5. No collection of exposure

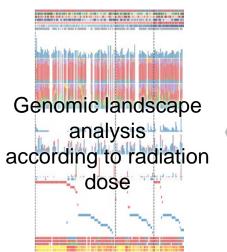
Remarkable insights into biology of cancer, but....

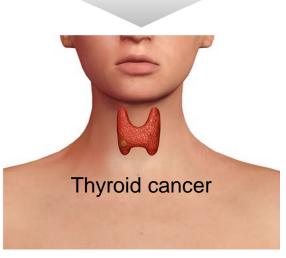

Difficult to investigate causal effects of environmental exposures


Flow of Data for Chernobyl PTC Study: Available through the NCI Genomic Data Commons (genetics) & Chernobyl Tissue Bank (phenotypes)






Radiation Epidemiology & Genetics



Morton et al Science 2021

Key Findings in Thyroid Tissue Analyses

- 1. >93% of driver mutations in MAPK pathway (ras/raf)
 - Radiation shifts towards fusion drivers
- 2. Non-homologous end joining DNA repair:
 - Fusions and structural variants
- 3. No field effect (radiation signature or drivers) in companion non-tumor thyroid
- 4. Epigenetic and gene expression profiles driven by cancer driver
 - No clear evidence for signatures of radiation effects

Is There a Transgenerational Effect of Protracted Radiation Following Chernobyl Accident?

Approach: Determine de novo mutations in adult children born to

- Liquidators & Evacuees
- Family Structure Design
- Current Analysis
 - 105 families
 - 130 adult children
 - Born 1987-2002
 - High Coverage Whole Genome Sequencing
 - Short read
 - 80 X coverage (higher than usual)
- Multistep calling algorithm
 - Manual inspection of all putative events

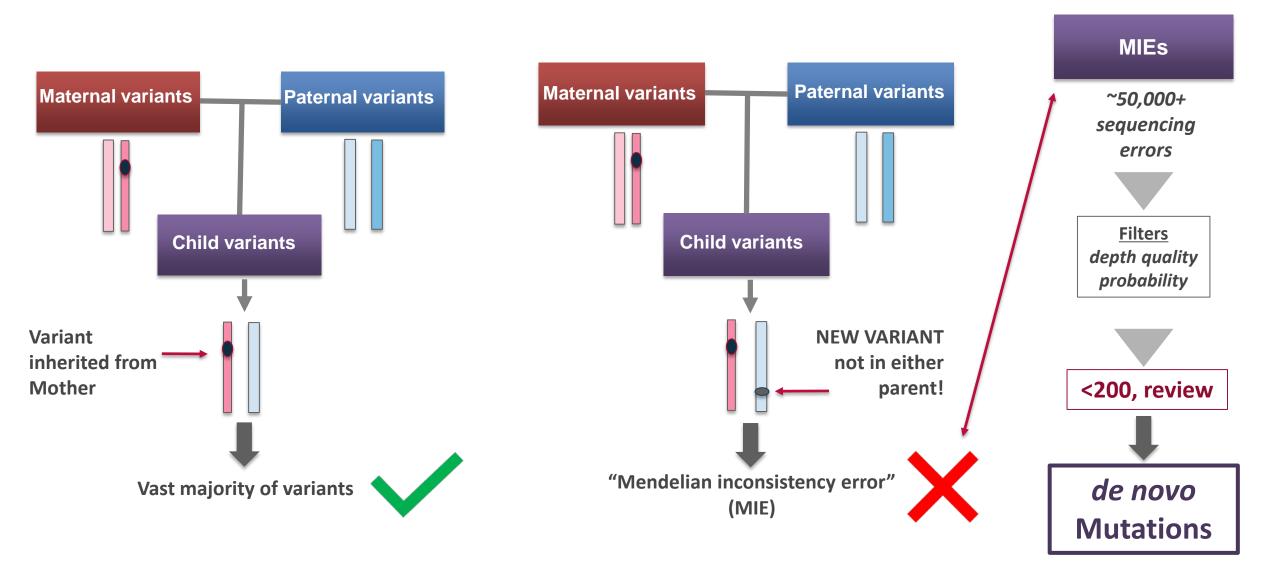
Bazyka et al. Amer J Epi 2020

Long-standing Controversy on Possible Transgenerational Effect Due to Radiation

Prior Animal Data

- High doses (2-4 Gy) acute exposures tested
- Evidence of double strand breaks
 - NHEJ DNA Repair
- Structural and chromosomal events
 - No single base mutational signature

Prior Human Studies


- Lower/protracted doses
- Investigation of outcomes
- Small, underpowered studies of genetic markers
 - Microsatellites (too few)
- Nagaski study of three family trios (whole genome sequence)
 - Anecdotal

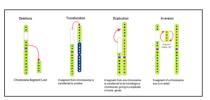
An essential type of mutation..... De Novo Mutations (DNMs)

- Due to random mutations in gametes (sperm and oocytes), a small number of variants are generated
- Transmitted variants are known as de novo mutations (DNMs)
- Critical blocks of evolution
- Only class of genomic variation to NOT undergo purifying selection
- DNMs account for a fraction of neurodevelopmental disorders
- DNMs ascertained by analysis of both parents with child(ren)
 - o "Seen" only in child but not parents

Principle for Detecting De Novo Mutations (DNMs)

Family Trio Whole Genome Sequencing

Associations of Age at Conception, Cumulative Ionizing Radiation Dose, and Smoking History with Total DNM Count


	Estimate	95% Confidence Interval	P-value
Age at conception			
Maternal age	0.46	-0.02, 0.93	0.06
Paternal age	1.94	1.51, 2.36	3.65×10 ⁻¹⁵
Cumulative radiation dose (/mGy)			
Maternal dose	-0.02	-0.04, 0.007	0.17
Paternal dose	-0.0007	-0.003, 0.002	0.56
Smoking history			
Maternal former smoker	-4.13	-10.74, 2.49	0.22
Maternal current smoker	5.31	-0.18, 10.81	0.06
Paternal former smoker	0.91	-5.16, 6.97	0.77
Paternal current smoker	2.91	-0.93, 6.75	0.14

Important Considerations

- Risk of small change of DNMs is very small (if at all)
- Timing of radiation dose could be critical
- Further trio studies of higher dose exposure
 - Chernobyl
 - Survivors of Hiroshima/Nagasaki (RERF)
- Not clear it is worthwhile for lower doses (Fukushima)
- Clonal Hematopoiesis (CH) in Liquidators
 - Increased CH seen following radiotherapy
 - Higher coverage of select genes (DNMT3A, TET2, TP53, etc)

Effect estimates of cumulative radiation dose on subgroups of DNMs*

	Estimate	95% Confidence Interval	P-value
Clusters (n = 181)			
Paternal Dose (mGy)	-0.0002	-0.0005, 0.0002	0.33
Maternal Dose (mGy)	0.003	-0.0008, 0.006	0.13
Complex (n = 50)			
Paternal Dose (mGy)	0.00001	-0.0002, 0.0002	0.91
Maternal Dose (mGy)	-0.0003	-0.002, 0.002	0.73
Indels (n = 2,103)			
Paternal Dose (mGy)	0.0002	-0.001, 0.001	0.78
Maternal Dose (mGy)	-0.01	-0.02, 0.002	0.12
Microsatellites (n = 730)			
Paternal Dose (mGy)	0.0003	-0.0004, 0.001	0.41
Maternal Dose (mGy)	-0.002	-0.008, 0.004	0.51
SNVs (n = 9,388)			
Paternal Dose (mGy)	-0.0008	-0.003, 0.002	0.51
Maternal Dose (mGy)	-0.01	-0.03, 0.01	0.39
Total DNMs (n = 11,722)			
Paternal Dose (mGy)	-0.0007	-0.003, 0.002	0.56
Maternal Dose (mGy)	-0.02	-0.04, 0.007	0.17

^{*}Microsatellites are a further subgrouping of Indels & adjusted for sequencing batch, parental age, and parental smoking status

Challenge of Subtype Events Analyses: Statistical Power & Read Length

Current reports based on 'short read' NGS (150-300 bp)

Types of events:

Complex & Cluster events are very rare

~1-2 per generation

Microsatellites

~8-10 per generation

- Detection of transgenerational radiation effect
 - Power estimates require substantially larger trio sets

Future opportunity- Long read NGS (Pacbio or Oxford Nanopore)

- Read lengths in 1-15 kb enable rare complex events to be identified
- Input DNA- enormous (can not use WGA-amplified DNA)

Resource considerations for well-designed studies: 'Agnostic' genome-wide vs candidate studies

1. Input material varies

Commercial Arrays (SNP/epigenetics)
 50 ng

Short read NGS
 100-200 ng

Long read NGS
 10 ug

2. Analytic pipelines

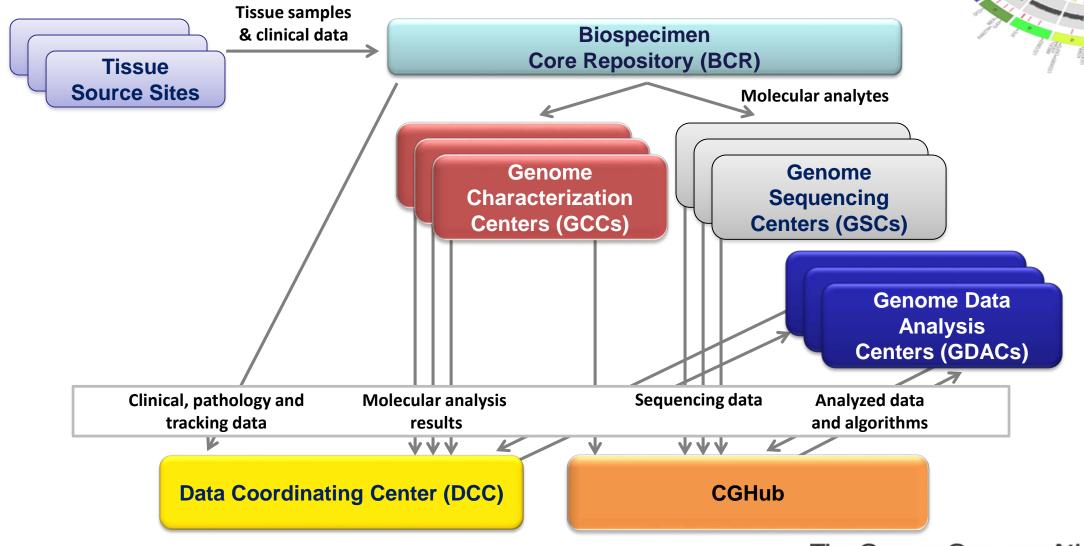
- Ready for 'agnostic' genome wide analyses
 - Short read DNA & RNA
 - SNP/methylation chip analsyes
- Not ready for agnostic genome wide analyses
 - Long range NGS (PacBio & ONP)
 - Epigenomic (bisulfite whole genome sequencing)

"The GeNOME" "Friend or foe?"

Promising

Haunting

Dangerous


Informatics and Analyses: Team Science High Cost for Personnel and IT Structures

- High performance computational capabilities
 - Containerized analytical programs
 - Large cluster availability or
 - Cloud Computing
- Large scale storage
 - Movement of data
- Team of experts to analyze data
- Team of experts to manage data
- Team of experts to interpret data

FAIR data management FAIR data sharing

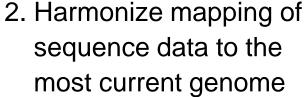
Findable Accessible Interoperable Reusable

TCGA Data Flow for "omics" (but lacking epidemiological & clinical data)

NCI Genomic Data Commons (GDC) Functionality

NCI Genomic

Data Commons



Genomic/

clinical

data

genomic and clinical data from NCI programs

1. Import and standardize

- 3. Implement state-of-art analytic methods:
 - mutation calls
 - copy number
 - structural variants
 - digital gene expression

- 4. Maintain data security and manage authorized access
- Enable data browsing, download and on-site analysis
- 6. Open GDC for upload of new cancer genomic data from researchers worldwide for data analysis and and sharing.

GDC Supported Programs

NCI Programs

THE CANCER GENOME ATLAS

National Cancer Institute
National Human Genome Research Institute

Human Cancer Models Initiative

CTSP (Clinical Trial Sequencing Project)

ER (Exceptional Responders)

CDDP (Cancer Driver Discovery Program)

Non-NCI Programs

APOLLO Network

MULTIPLE MYELOMA
Research Foundation

Recommendations:

Hybrid System for Funding

- Managed project at large scale: Costs are high for 'omics'
- Centers for specific analyses using publicly available data (GDC)
- RFAs for projects to use large-scale data resource and pursue specific aims
 - Immense value of investigative biology

Rationale for Hybrid System

- Upfront Costs for Major Project(s)
 - Study designs & dosimetry
 - Generation of data for integration
- Avoid a series of underpowered, inadequate studies
- Support functional follow-up based on integration of data

Modern data sharing policies & use of cloud-technologies

Best way to engage international community

Questions?

ONE PROGRAM,
MANY PEOPLE,
INFINITE POSSIBILITIES
irp.nih.gov