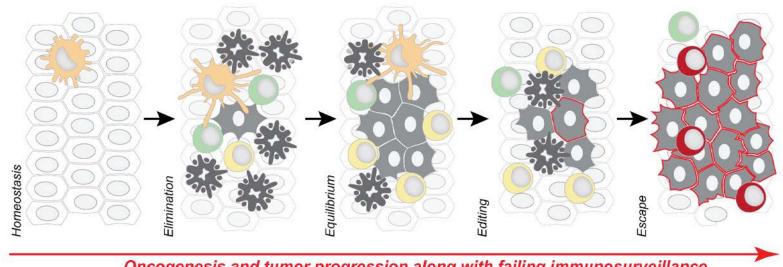


The immune system, cancer and radiation

Sandra Demaria, M.D.


Professor of Radiation Oncology & Pathology and Laboratory Medicine Weill Cornell Medicine, New York, NY

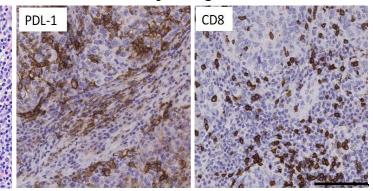
NASEM meeting, November 16, 2021

- Methods to study the immune response in cancer
- Application to low dose radiation exposure
- Opportunities and challenges
- Research priorities

- Methods to study the immune response in cancer
- Application to low dose radiation exposure
- Opportunities and challenges
- Research priorities

Cancer immunoediting: a framework to study immune system/cancer interactions

Oncogenesis and tumor progression along with failing immunosurveillance

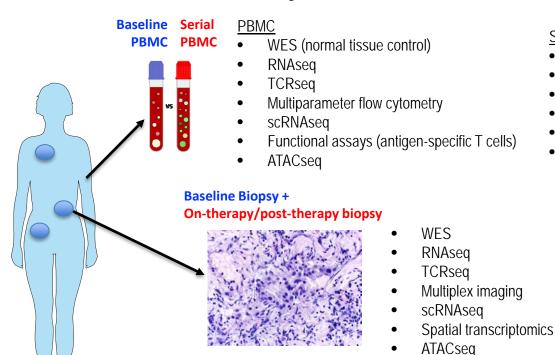


Some patients develop/retain meaningful spontaneous anti-tumor immunity

Hot


tumor

Example of untreated early stage TNBC


That is

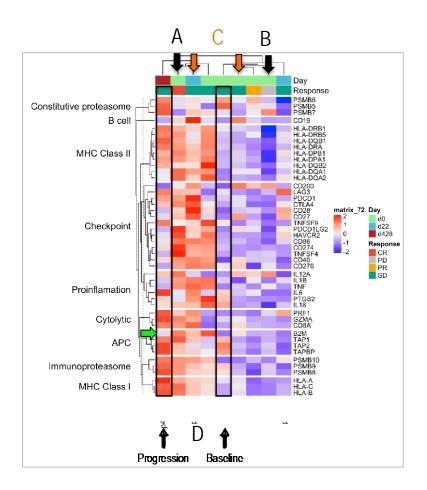
- Prognostic for survival
- Predictive of response to immunotherapy

Cold tumor Need to induce anti-tumor T cells: in situ vaccination (e.g., combination of radiation and immunotherapy)

Comprehensive approach to study immune responses associated with sensitivity and resistance to therapy

Serum/plasma

- cfDNA (TMB)
- Cytokines & chemokines
- Antibodies
- Soluble receptors (sMICA/B, sCD73, etc)
- Small extracellular vescicles (sEV)
- Proteomics

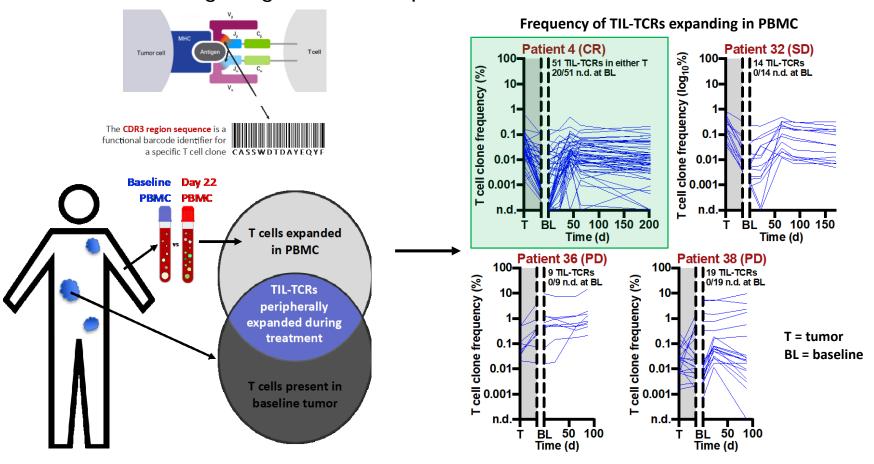

Microbiome

Gut

Oral

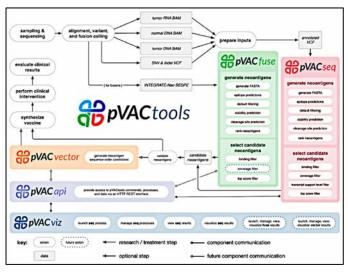
Organ sites (lung)

Interrogating the TME: an example

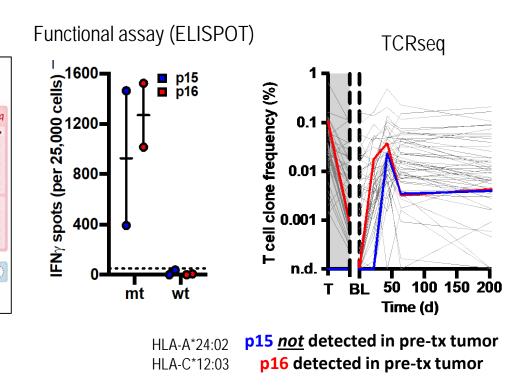

RNAseq characterization of the tumor biopsies from 7 patients: 1 CR, 1 PR, 4 SD, 1 PD

CR (pt#A): hot tumor at baseline PD (pt#B): cold tumor at baseline

SD (pt#C): cold tumor at baseline, hot at day 22

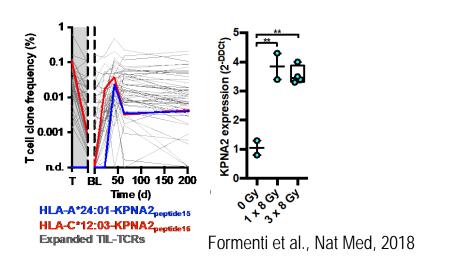

SD (pt#D) >1 year, initially "cold" tumor at progression (day 428) "hot" tumor (CD8A, GZMA, PRF1, and MHC genes), but very low B2M

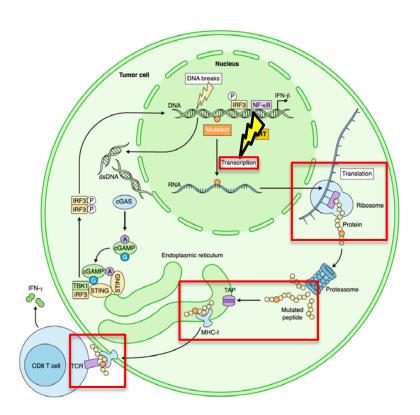
Interrogating the TCR repertoire in tumor and blood



Bioinformatic tools and functional assays to identify tumor antigen-specific T cells

In silico predictions (WES, RNAseq)




Hundal et al., bioRxiv (501817), 2018

Effects of therapeutic radiation on neoantigen expression

Lhuillier et al. Genome Medicine (2019) Lhuillier et al. J Clin Invest (2021)

- Methods to study the immune response in cancer
- Application to low dose radiation exposure
- Opportunities and challenges
- Research priorities

Environment International	149	(2021)	106212

	Low	Intermediate	High
Dose	<0.1 Gy	0.1-1 Gy	>1 Gy
Settings	Environmental	Environmental /Clinical	Therapeutic

MELODI workshop on non-cancer effects of low dose IR, 2019

ACUTE:

A-bomb survivors (~0.16 Gy) & Cernobyl cleanup workers

- Immune changes similar to ageing (reduced naïve T cells, reduced TCR repertoire, increased inflammation)
- Functional significance unclear: responses to vaccination not impaired

CHRONIC:

Environmental or work-related (uranium)

- Increase in inflammatory cytokines/markers (CRP, IL-1, IL-6, IL-8, TNFα)
- Relative increase in CD8+ T cells, innate immune cell activation
- Functional significance (at least in workers): increase in diseases associated with immune e dysfunction (autoimmune, infectious, allergic)

Anti-inflammatory effects of intermediate dose (0.3-0.7 Gy): Decreased adhesion of PMN to endothelium – associated with increased TGFβ secretion by endothelial cells (related to modulation of Nrf2 and anti-oxidative enzymes like catalase) – osteo-immunological mechanisms in inflammend joints (radon spa)

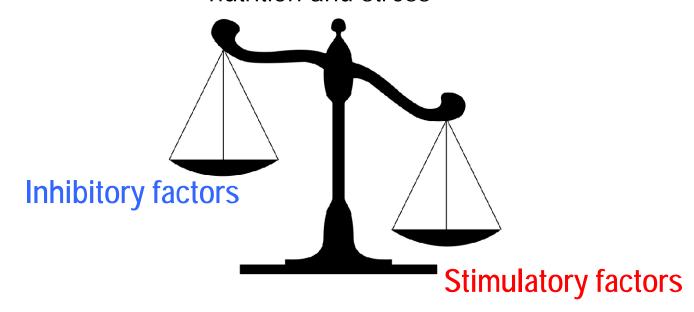
Biomarkers of exposure to radiation (X-ray, PET, CTscan): Presence of micronuclei in RBC, γ H2AX foci in lymphocytes

Response is NOT linear

? to which degree low dose radiation causes/exacerbates

Inflammaging

• Senescent immune remodeling (SIR) of adaptive immunity and its pathogenesis (aging-associated alterations in stem cell differentiation) [Denkinger et al., Trends in Immunology, December 2015, Vol. 36, No. 12]


Use of modern tools to define changes in immune cell subsets

- TCRseq (assess reduction in diversity of T and B cell repertoire)
- Analysis of T_{naive}, T_{CM}, T_{EM}, T_{SCM}, exhausted phenotypes (defined by cell surface markers, transcription factors and epigenetic changes)
- Single cell analyses
- "Liquid biopsies" *may* reflect what is happening in the tissues (cfDNA and extracellular vescicles)

- Methods to study the immune response in cancer
- Application to low dose radiation exposure
- Opportunities and challenges
- Research priorities

Patient-specific cancer immune-set point

Tumor and host genetics – age – microbiome – concomitant infections, treatments, metabolic conditions, nutrition and stress

- Methods to study the immune response in cancer
- A pplication to low dose radiation exposure
- Opportunities and challenges
- Research priorities

Use of a holistic approach

The canonical pathways of response to injury & stress are shared: multidisciplinary collaborations with investigators working on tumor immunology, autoimmunity, organ transplant and infectious diseases –

Standardization of assays across different centers

Data sharing