
• The NIEHS Toxicant Exposures and Responses 
by Genomic and Epigenomic Regulators of 
Transcription (TaRGET) Program established 
in 2012 with the goal to increase our 
understanding of how exposures affect and 
interact with functional and regulatory 
processes that cause persistent epigenetic 
alterations.

• In 2016, TaRGET II established a mouse 
consortium focusing on surrogate (e.g. blood, 
skin) and target (e.g. liver, brain) tissue 
analyses of epigenomic signatures across the 
life course after developmental exposure to 
environmental toxicants.

TARGET II Consortium

NIEHS U01 TaRGET II CONSORTIUM



• Biomarkers in human population-based studies are limited to easily obtainable tissues (hair, blood, and 
saliva).

• It is currently unknown if epigenetic alterations induced in disease-relevant, but often inaccessible target 
tissues will be reflected in correlative changes in surrogate tissues. 

• Also unknown is whether toxicant-induced changes in the epigenome persist in target or surrogate tissues 
after exposure cessation and/or change over the life-course.

• Finally, it is increasingly evident that the effects of exposures are highly sex specific and influenced by 
ill-defined inter-individual differences, adding another layer of complexity to the interpretation of 
population-based studies  

To fill these knowledge gaps, the NIEHS TaRGET II Consortium is investigating the conservation of 
toxicant-induced epigenomic changes across tissues and time, in both males and females, in response to a 
variety of developmental environmental exposures

DRIVERS FOR TaRGET II INITIATIVE



Organizational Structure TaRGET II Consortium

• Consortium made up of 7 institutions profiling epigenomic response to 8 toxicants
• Data Coordinating Center  (DCC) to which all transcriptomic, epigenomic and meta-data are 
uploaded into a database for analysis by the DCC, Consortium members, and ultimately non-
consortium researchers
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Organizational Structure TaRGET II Consortium

• Consortium made up of 7 institutions profiling epigenomic response to 8 toxicants
• Data Coordinating Center  to which all transcriptomic, epigenomic and meta-data are uploaded 
into a database for analysis by the DCC, Consortium members, and ultimately non-consortium 
researchers
• T2C Wiki developed for distribution of consortium information
• Working groups with regularly scheduled meetings established for:

- T2C Steering Committee made up of U01 PIs and NIEHS Program Staff
- T2C Bioinformatics group led by DCC with broad consortium participation
- T2C Methods Development led by U. Mich team (Dolinoy) with broad consortium 
participation
- T2C Manuscript publication guidelines led by NC State team (Aylor) with broad 
consortium participation
- Scientific Advisory Board formed and convened

• Annual “all hands” meetings held until COVID pandemic, transitioned to virtual format (not 
optimal) 
• Developing a T2C consortium “package” of manuscripts to be published concurrently in 2022
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• What is the direct impact on the 
developing epigenome and 
transcriptome?
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• What genes and pathways 
drive pathogenesis 
downstream of epigenomic 
reprogramming?

• Which epigenetic alterations persist and 
what is the impact of reprogramming on 
the transcriptome?

• Can we identify correlative exposure/risk 
signatures in surrogate tissues?
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Adoption of T2C Consortium-wide Exposure Paradigm and Profiling 

Approaches

• Use of standardized mouse exposure 
paradigm across the consortium 
allowed for consistency and the use of 
controlled exposures.

• Use of same timepoints (3 weeks, 5 
and 10 months) allowed for 
comparison across exposures and 
consortium sites

• Developed and deployed standardized 
and coordinated methodological 
approaches for comparison across 
exposures and consortium sites

• Developed and shared detailed 
standardized metadata schema via 
the DCC



Data Coordinating Center Research Activities

1. Data curation of over 2100 TaRGET II omics datasets. 
• Omics data processing, formatting, and management
• Transparent data sharing through research community

• TaRGET Data Portal (https://dcc.targetepigenomics.org/)
• AWS open data (https://registry.opendata.aws/targetepigenomics/)

2. Development of bioinformatics tools/pipelines for omics data QC and processing.
• Construction of version-controlled omics data QC pipeline 
• Development of novel bioinformatics tools to facilitate QC processing

• AIAP: ATAC-seq Integrative Analysis Package (https://doi.org/10.1016/j.gpb.2020.06.025)
• BeCorrect: Creates batch corrected visualization file (https://doi.org/10.1038/s41598-020-66998-4)

3. Development of novel statistical and bioinformatic methods to analyze omics data.
• Modified TMM normalization method to enable consortium-wide data normalization 
• Novel statistical framework to analyze WGBS data with large replicates

4. Identification of signatures for specific toxicant exposures.
• Discovering epigenomic signatures corresponding to distinct toxicant exposures
• Exploring the commonality of toxicant exposures at pathway level
• Detecting the cross-talk between transcriptome, epigenome landscape and long-term epigenetic memory
• Understanding the common signatures between target and surrogate tissue as a function of exposure

5. Creation of database of epigenomic signatures corresponding to toxicant exposures.

https://dcc.targetepigenomics.org/
https://registry.opendata.aws/targetepigenomics/
https://doi.org/10.1016/j.gpb.2020.06.025
https://doi.org/10.1038/s41598-020-66998-4
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TaRGET I and II Consortium Learnings: Consortium 
Effectiveness

• Harmonizing technologies across multiple sites/labs/investigators is time-consuming and challenging.  While we started out 
using this model (i.e. ATAC-seq), it was replaced by establishing expertise at a single-sight to generate data consortium-wide 
(WGBS, ChIP-seq)

• Expectations and timelines must be clear, milestones agreed upon and investigators held accountable. This includes an 
understanding that U-type Programs are about data generated and differ from R-type grants. 

• Would recommend considering an initial funding period for participants to help the consortium “gel”, provide opportunity to 
demonstrate responsiveness, and if necessary, reshuffle the deck to enhance productivity prior to major investment in resources.

• DCC absolutely essential (and ours was great) but cannot replace on-site interactive bioinformatics expertise to generate 
site/study-specific insights that can benefit the whole consortium. Also, the DCC needs to be sustainable beyond the last upload of 
consortium data for updates, manuscript preparation, community use etc.

• Extensive tissue banking made it possible to add other consortium-wide analyses (e.g. ChIP-seq) and respond to other 
stakeholders (e.g. added cortex at NIA request) after the studies were initiated/concluded

• The concept is always simpler than the actual research- The short duration and budget for T2C was unrealistic. 
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CHALLENGE OF QUANTITY VS QUALITY

First and most obvious: Sample size vs profiling depth/comprehensiveness
• Expense of Next-gen profiling vs sample size? Typical budget for comprehensive epigenomic profiling 
(RNA-seq, ATAC-seq, ChIP-seq, WGBS) ~$5000/sample (within order of magnitude)
For 2 sexes x 2 arms (exposure + vehicle) x 2 tissues (target + surrogate) 
N=10 $400,000     N=5 $200,000  etc.

Equally important but less obvious considerations: 

• Number of orthologous approaches vs comprehensiveness of epigenomic profiling? Using epigenomic 
profiling, orthologous techniques did not produce redundant information e.g. little overlap between 
RNA-seq, ATAC-seq, and ChIP-seq signatures.  ATAC-seq was least informative.

• Coverage vs granularity? Whole tissue RNA-seq vs scRNA-seq, Whole tissue ChIP-seq vs Cut-and-
Tag, WGBS vs RRBS etc. 

• Pooling of animals vs individual measurements? Inter-individual variation in response seen even 
when using genetically identical inbred C57Bl/6 mice.  Sample availability (and in some cases 
profiling approach) can become limiting when analyses done at the level of the individual animals (e.g. 
blood from 3 week old mice).  However, pooling can mask effects if there are “responders” and “non-
responders” in exposure arms
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TBT-induced Reprogramming and High-risk Endotype 
Precedes Tumor Development

• When combined, 5 month livers of TBT-exposed mice display very few 
DEGs (227 DEGs) vs vehicle.  However hierarchical clustering identified 
2 endotypes in 5 month old male livers that differed from each other 
by > 4000 DEGs and from normal age-matched liver by >1400 DEGs
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• When combined, 5 month livers of TBT-exposed mice display very few 
DEGs (227 DEGs) vs vehicle.  However hierarchical clustering identified 
2 endotypes in 5 month old male livers that differed from normal age-
matched liver by >1000 DEGs

• PCA analysis also separated 5mo TBT liver into  2 endotypes
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• When combined, 5 month livers of TBT-exposed mice display very few 
DEGs (227 DEGs) vs vehicle.  However hierarchical clustering identified 
2 endotypes in 5 month old male livers that differed from normal age-
matched liver by >1000 DEGs

• PCA analysis also separated 5mo TBT liver into  2 endotypes
• Endotype #1 clusters with the 10 mo “high-risk” TBT endotypes
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Anchoring and Stratifying with 
Transcriptomics and Phenotyping

First and most obvious: Interpreting epigenomic data with transcriptomic data 
• Altered patterns of gene expression as a downstream response to epigenomic reprogramming can aid in 
interpretation of epigenomic data and provide insights into mechanisms of adverse effects/health 
outcomes

Equally important but less obvious considerations: 

• Exploratory experiments to determine “value” of in-depth (expensive) epigenomic profiling in specific 
tissues/cells  Across different exposure paradigms, relevant tissue(cell) targets for an exposure to produce 
an effect may not be known-how many to profile (see previous cost analysis).  

Similarly, when calibrating across different exposures and consortium sites, choice of a single target 
(i.e liver for TaRGET II) while providing methodological consistency, may only be informative for a few 
exposures (i.e. all exposures do not impact all tissues/cells equally-some not al all). 

• Over-dependence on Transcriptional profiling can miss important “silent reprogramming” useful as 
both a biomarker and determinant of later-life effects
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On Western Diet, rats have larger livers, higher levels of serum 
cholesterol, and dyslipidemia relative to either BPA-exposed on 
normal chow or vehicle-exposed on Western diet
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acutely after exposure, and is 
persistent

However, no change in EGR1 
expression until challenged with 
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EGR1 transcriptome 
accounted for > 70% 
of the aberrant 
response to Western 
diet

Trevino et al Nature Communications 2020
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Importance of Longitudinal Analyses: Epigenomic Plasticity 
of Aging is Vulnerable to Environmental Exposures

• It is now well appreciated changes in the epigenome occur during the aging process.  What is less well-understood 
is whether/how these alterations  drive age-associated diseases or create vulnerabilities to environmental exposures.

• By capturing both normal and toxicant-induced epigenomic changes across the life-course, we have found the 
plasticity inherent to normal epigenomic aging creates a vulnerability to multiple environmental exposures

• Examples include both acceleration and attenuation of epigenomic aging by early-life exposures

• In the case of toxicant-induced attenuation of age-associated changes in the liver epigenome (“anti-aging” 
signature) linked to development of fatty liver and tumors, these age-asscociated alterations are able to 
accurately stratify human patient populations by disease (HCC) and severity (NAFLD/NASH)



Hsd3b5

• Hydroxy-delta-5-steroid 
dehydrogenase

• Normally increases in expression 
from 3 weeks to 10 months in 
vehicle animals 

• H3K4me3 at promoter normally 
increases between neonatal and 
adult life

• Lack of H3K4me3 in the high-
risk endotype at both 5 and 10 
mo, indicating epigenetic 
reprogramming preceded tumor 
development
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• 2157/3721 (58%) of the TBT signature is driven by attenuation of 
normal age-related changes

• Genes differentially expressed in response to TBT as well as TCDD 
and BPA in this “anti-aging” signature also showed strong negative 
correlation with human liver disease signatures
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Epigenomic Plasticity of Aging is Vulnerable to 
Environmental Exposures
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p = 4.44 x 10–24

239 patient samples 
(Lee et al Nat Gen 2014) 

• 2157/3721 (58%) of the TBT signature is driven by attenuation of 
normal age-related changes

• Genes differentially expressed in response to TBT as well as TCDD 
and BPA in this “anti-aging” signature also showed strong negative 
correlation with human liver disease signatures

• The “anti-aging” component of the TBT signature shows 
significant positive correlation with human HCC signatures



Toxicant-induced Signatures Correlate with Altered Gene 
Expression in Human Liver Disease

Male mouse liver signatures:

Clinical 
disease 
cohorts:



TaRGET I and II Consortium Learnings: Epigenome 
x Environment Interactions

• Exposures during “first 100 days” (pre-
conception through weaning) cause alterations 
in the epigenome  that persist across the life-
course

• Epigenomic plasticity associated with normal 
aging is vulnerable to reprogramming and 
translates to human disease settings

• Data obtained with different epigenomic 
profiling approaches provide distinct 
information

• Heterogeneity in response can be a significant 
confounder even in genetically homogeneous 
models

• Epigenomic reprogramming while persistent, 
may not cause a change in gene expression 
until triggered by later life environmental 
stressors 
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