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Context is a critical bridge to realize the impact and value of
applying Al, models and data science tools into real-world settings.

“THERE IS A LACK OF AWARENESS OF
THE SO-CALLED ‘Al CHASM’, THAT IS
THE GULF BETWEEN DEVELOPING A
SCIENTIFICALLY SOUND ALGORITHM
AND ITS USE IN ANY MEANINGFUL

REAL-WORLD APPLICATIONS.”
P. Keane & E. Topol — npj Digital Medicine 2018
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Imaging is a Beacon for Personalizing Cancer Treatment
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Broad Range of Data Domains for Multimodal Biomedical Al
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Team Data Science Principles:
Grounding Our Approach with ‘Data in Context’

@> Observations in context

Dynamic assessment of quality based on context

AN
1111

Q Provenance linking insights to observations to build confidence/trust and
attribution for data and insight contributions

. . Integrated data governance - ensure appropriate data access and
“&*  attribution based on role & intended use

The underlying glue to bring together these principles into action is METADATA

Chung - 'Cancer needs a robust 'metadata supply chain' to realize the promise of Al '- Cancer Res Dec 2021
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1 The volume of data generated, consumed,
copied, and stored is projected to exceed 180

zettabytes by 2025
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Prevalence and Sources of Duplicate Information in the Electronic Medic>' Record

Jackson Steinkamp, MD; Jacob J. Kantrowitz, MD, PhD; Subha Airan-Javia, MD
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Impact of Wide

Variability in Data
e.g. Standard of Care
Imaging

EMERGING TECHNOLOGY DAY ONE PROJECT

A Quantitative Imaging
Infrastructure To Revolutionize Al-
Enabled Precision Medicine

12.12.24 | 9 MIN READ | TEXT BY WILLIAM HOLLANDER & CALLIE WEIANT &
CAROLINE CHUNG & NOLA HYLTON & MATTHEW ROSEN

https://fas.org/publication/ai-enabled-
precision-medicine/

Impact of Focusing on
Data without Context

Advances in Radiation Oncology (2021) 6, 100708

Thrower et al. — Advances in Radiation Oncology (2021)

% Hundreds of Al tools have been built to catch
= covid. None of them helped. | MIT Technology
8 Review
Some have been used in hospitals, despite not being properly tested.

But the pandemic could help make medical Al better. When covid-19
struck Europe in March 2020, hospitals were plunged into a ...



https://fas.org/publication/ai-enabled-precision-medicine/
https://fas.org/publication/ai-enabled-precision-medicine/

' Integrate & consider metadata because ‘CONTEXT MATTERS' =
during model development, validation and deployment.

Some CONTEXT that may introduce bias:

+ Cohort selection
— Age
— Race/ethnicity
- SES
— Geographic location — environmental, diet ...#I
— Comorbidities — impact of other conditions or related
medications on the observations/outcomes
Classification/subtype/stage of disease

» Availability of data — frequency, timing & types of data could be
connected to geography, insurance status, age, etc.

* Measurement error bias — scanner, protocol, patient cooperation i
(e.g. motion, sedation)




» When tackling complex questions like cancer, we can benefit from
empowering the complexity to deepen our understanding.

» We need to consider Data (content) + Metadata (context) as we generate,
curate, and utilize data to ensure meaningful insights are generated.

« Starting with a clearly defined purpose (or problem that needs to be solved) is
critical to building the appropriate team, bringing together the best fit data, and
considering the context of development and implementation to drive to impact.

» Verification, validation and uncertainty quantification (considering the data and
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