Issues in the Use of AI for Breast Cancer Screening

Etta D. Pisano, MD FACR FSBI
The American College of Radiology and the University of Pennsylvania
Beebe Symposium at the National Academy of Medicine
March 14, 2025

Conflicts

- I am an employee of the American College of Radiology (ACR) AND of ARPA-H, a federal government agency under HHS. At ARPA-H, I lead the Advancing Clinical Trials Readiness (ACTR) Initiative.
- The ACR is working with many AI vendors to help them prove the safety and efficacy of their products, sometimes for FDA premarket evaluation.
- The ACR is also working to help radiologists understand how Al products may be useful in their unique practice settings.
- All views expressed in this talk are mine and do not represent official positions of the ACR OR ARPA-H.

Fundamentals of US Breast Cancer Screening

- For those without signs or symptoms of breast cancer
- Annual or biennial starting at 40, ending depends on woman
- 2 views per breast for digital mammography, or multiple slices for tomosynthesis
- Generally read "off line" (Not while the woman waits)
- 7-15% "called back" for additional work-up which includes extra mammographic images, US, MRI. Some of these are technical repeats.
- Approximately 8-10% of those called back get breast biopsies (usually imaging-guided, but some need surgical biopsy)
- Of those who get biopsy, ~20% have cancer (or 5-10/1000 people screened).
- And, some cancers are still missed (~40% of breast cancers are visible on prior mammograms).

Fundamentals of US Breast Cancer Screening

- For those without signs or symptoms of breast cancer
- Annual or biennial starting at 40
- 2 views per breast for digital mammography, or multiple slices for tomosynthesis
- Generally read "off line" (Not while the woman waits)
- 7-15% "called back" for additional work-up which includes extra mammographic images, US, MRI. Some of these are technical repeats. We can reduce False Positives at call back!
- Approximately 8-10% of those called back get breast biopsies (usually imaging-guided, but some need surgical biopsy).
- Of those who get biopsy, ~20% have cancer (or 5-10/1000 people screened). We can reduce False Positives at BX!
- And, some cancers are still missed (~40% of breast cancers are visible on prior mammograms). We can improve True Positives!

A Potential Schema for Evaluating AI and the Relative Importance of Each Factor

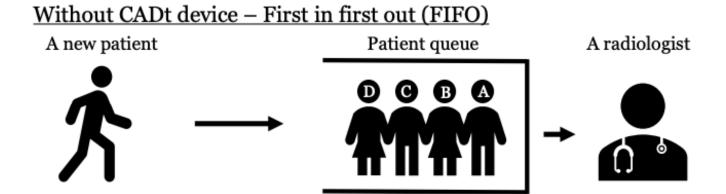
- What is effect on patient outcomes (cancer dx/death/etc.)?
 FEWER DEATHS from BREAST CANCER and LESS MORBIDITY FROM DX/RX
- How SAFE (Accuracy/Sens/Spec) is the technology for patients?
 MUCH SAFER...NO CHANGE IN SAFETY...MUCH LESS SAFE
- How does this technology effect costs?
 MUCH MORE EXPENSIVE...NO CHANGE...MUCH LESS
- Does the technology increase convenience for patients?
 MUCH MORE...NO CHANGE...MUCH LESS
- How much would this help radiologists do their jobs better?
 EXTREMELY HELPFUL...SLIGHTLY HELPFUL...NOT HELPFUL

"The Food and Drug Administration (FDA) is responsible for protecting the public health by assuring the **safety, efficacy**, and security of human and veterinary drugs, biological products, medical devices, our nation's food supply, cosmetics, and products that emit radiation. The FDA also provides accurate, science-based health information to the public."

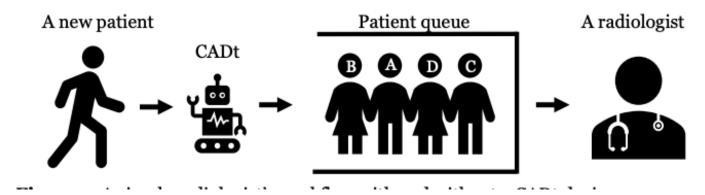
~46 AI products applied to breast imaging have been authorized for sale in the US as of 1/27/2025.

Breast Al Software = Medical Device

Is Autonomous Breast AI allowed under MQSA for the interpretation of screening mammograms?

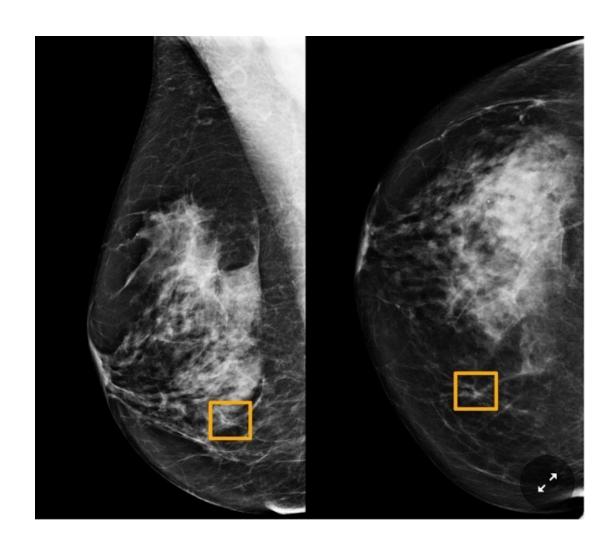

Breast Al Software = Medical Device

Is Autonomous Breast AI allowed under MQSA for the interpretation of screening mammograms? NO! But there are companies lobbying to change MQSA.

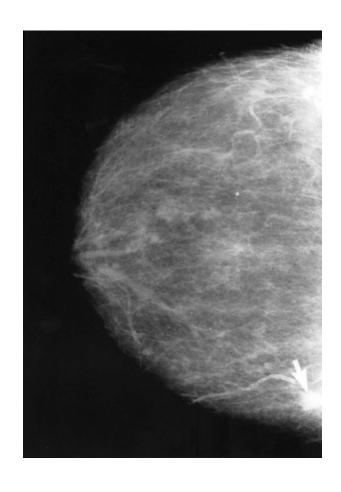

Current Regulation of AI/ML Software – Intended Uses

- CADt-Triage
- CADe-Detection/Localization
- CADx-Diagnosis/Characterization
- CADe/x-Both Detection and Diagnosis/Classification
- CADa/o-Acquisition/Optimization

How CADt software is intended to be used*



With CADt device – Preemptive-resume priority (PRIO)


^{*}From poster by E Thompson, et al. of FDA CDRH https://www.fda.gov/media/148986/download

How CADe software is intended to be used*

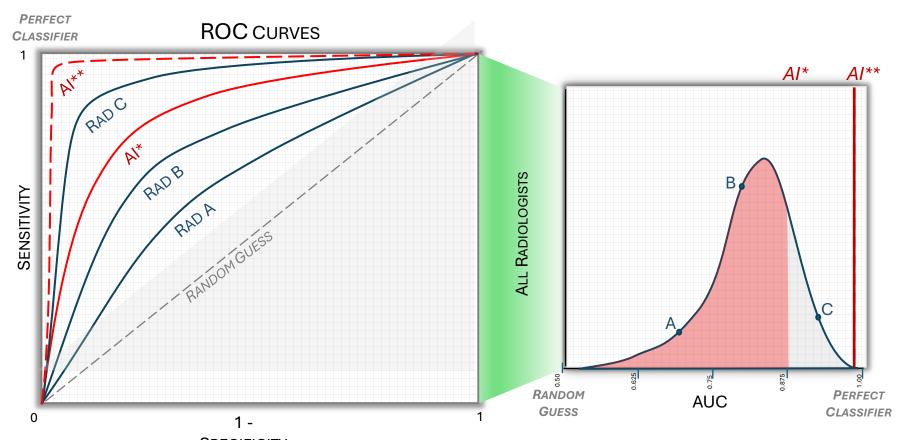
*From NYTimes. "Al is learning to read mammograms" by Denise Grady. 1/1/2020. Image from Northwestern University.

How CADe/x software is intended to be used*

AI SYSTEM OUTPUT

BIRADS 5- HIGHLY SUGGESTIVE of MALIGNANCY

*https://upload.wikimedia.org/wikipedia/commons/3/35/Mammogram_with_obvious_cancer.jpg


Measuring Patient Outcomes

- Requires years of study to assess accurately (breast cancer deaths happen 5-25 years after initial diagnosis)
- Impractical in the regulatory environment
- Requires randomized clinical trials to reduce confounding by factors not related to the AI (SES, race, ethnicity, comorbid conditions, etc).
- Can be studied through registries with excellent ascertainment of outcomes (e.g. BCSC)

Potential Methods to Assess Safety and Efficacy (Diagnostic Accuracy/Sensitivity/Specificity) of Breast Al Software

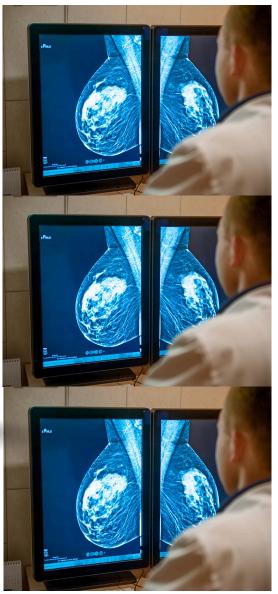
- Standalone performance testing practical in the regulatory environment
- Reader Studies practical in the regulatory environment
- Clinical Trials too expensive in the regulatory environment, so impractical

An ideal AI system will improve AUC and increase both sensitivity and specificity.

Note that "sensitivity" is NOT measured relative to radiologist performance, but to the actual presence of cancer in the breast up to a set time* after the examination, whether visible on the mammogram or not.

Al Software Standalone Performance Testing

Diagnostic Accuracy, Sensitivity, Specificity, PPV, NPV, Call back rates


Limitations of Standalone Performance Testing

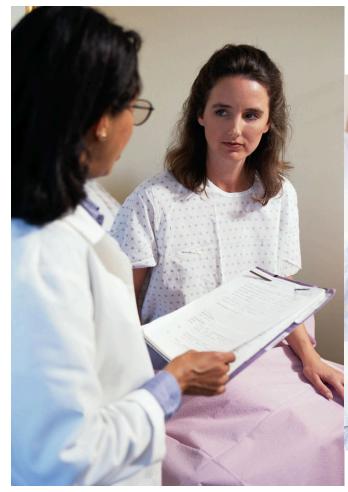
- Were cases properly categorized as negative or positive and what was that categorization based on?
- Were training and testing sets representative of the population the algorithm will be applied to?
- Will results generalize to other datasets?
- What sorts of data were missing from the training and testing?
 - breast density
 - lesion types/sizes/features
 - Subtlety of cancers
 - Rare conditions

Reader Studies

Individual Reader Data with and without the AI

Diagnostic Accuracy
Sensitivity
Specificity
PPV
NPV
Call back rates

AND


GROUP PERFORMANCE DATA

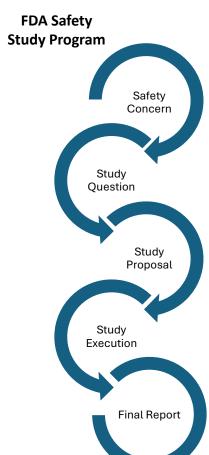
Limitations of Reader Studies –Same as Standalone

- Were readers representative of the radiologists who will use the product?
- Since no patient is impacted by the readings, do readers use the software differently than in real life?
- In order to obtain data on accuracy, etc, radiologists must use a different scale than they use in usual practice – not just Call Back or not, but also likelihood of malignancy.
- Cases must be enriched for cancers compared to the usual screening population (4-7/1000 versus e.g. ~30/100 in a sample of 300 cases). How does this impact the data collected?

Clinical Trials

1000s of volunteers

Extensive Data Entry and Cleaning


Central QC, Management and Analysis

Limitations of Clinical Trials – THE GOLD STANDARD

- They take a long time to do.
- They are very expensive.
- Sample sizes are gigantic when testing a screening tool (3-7/1000 will have cancer, so roughly 80,000+ needed for power).
- Are patient populations enrolled representative of the US population?
- Are the sites/physicians where the trials are run representative of all US clinical sites?
- Do clinicians participating in trials behave the same way they do in clinical practice?

Real-world Evidence Safety Study: Radiological AI for Large Vessel Occlusion (LVO) – slides courtesy of Robert Ochs of FDA CDRH

 Purpose: to evaluated AI computer-aided triage and notification (CADt) devices indicated for prioritization and notification of suspected LVO

FDA initiated; protocol developed with ACR; conducted by MGH and Lahey

Retrospective evaluation to compare real world performance vs. labeling

 Results: CADt performance consistent with the manufacturer-stated performance for ICA and M1 vessels, but not for other potentially treatable intracranial vessel occlusion in 2nd and 3rd order segments

 The instructions for use for the CADt devices in the study did not provide a sub-analysis of performance by vessel location

• Informed discussions with manufacturers about labeling revisions and an FDA safety communication

Real-world Evidence Safety Study: Radiological Al for Large Vessel Occlusion (LVO)

How well do radiological artificial intelligence computer-aided triage and notification (CADt) devices analyze computer tomography angiography exams for large-vessel occlusions (LVO)?

Although CADt devices perform well in the ICA and M1 segments, there are gaps in the detection of LVOs when considering other vessels and in cases with absent and uninterpretable data, meaning that radiologists must continue to communicate every potentially treatable LVO to the treatment team.

JACR VISUAL ABSTRACT

Evidence Reader Studies Don't Necessarily Predict ACTUAL Performance in the Real World

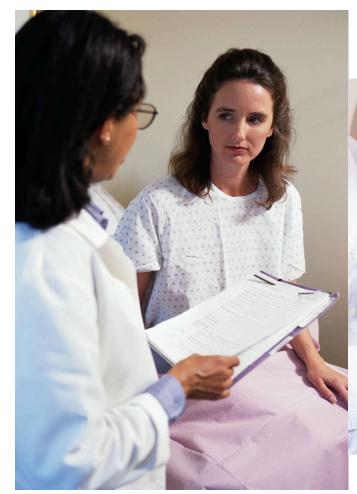
Research

Original Investigation | LESS IS MORE

Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection

Constance D. Lehman, MD, PhD; Robert D. Wellman, MS; Diana S. M. Buist, PhD; Karla Kerlikowske, MD; Anna N. A. Tosteson, ScD; Diana L. Miglioretti, PhD; for the Breast Cancer Surveillance Consortium

JAMA Intern Med . 2015 Nov;175(11):1828-37. doi: 10.1001/jamainternmed.2015.5231.

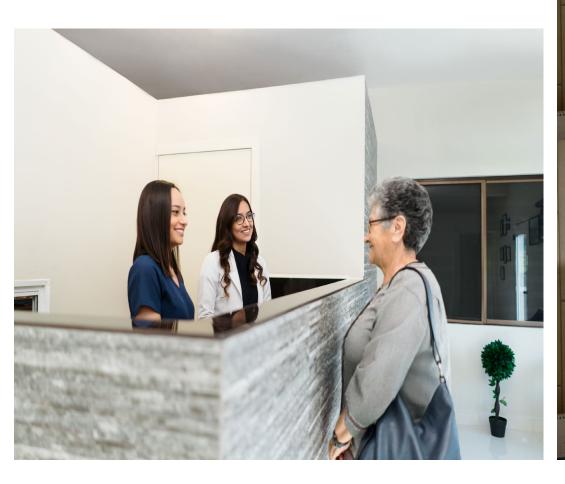

Ethical Issues with Using AI in 2025

- **Dismantling the current regulatory framework** likely will expose patients to uncertain risks. Radiologists will have to develop new methods to assess products on the market, especially if marketing hype drives patient demand.
- Using software "off label" may increase risk to patients.
- Al tools may have been proven effective on different patient populations or with readers who are not typical of individual practices, causing uncertainty of risks and benefits for different groups of patients and readers.
- Al tools **drift** over time and need correction for that when it happens. (ARPA-H Precise-Al seeks to address this issue.)

Could Real World Evidence be a pathway to the use of Autonomous AI in breast ca screening?

- Install AI algorithms that have reached certain performance levels through standalone performance tests in clinics before FDA authorization to learn how radiologists actually perform when they are used.
- Allow patients to opt out of the use of the AI at clinic check-in.
- For those who opt in, provide the standard of care interpretation by a single reader.
- Provide a second radiologist reading that uses the AI- one read for cases that AI determines as needing the radiologist to review, and an AI read alone (autonomous AI) plus a "quick read" by a radiologist for those cases that the AI determines as "almost certainly normal".
- If there are disagreements between the two radiologists, decide upon patient pathway call-back or not through consensus conversation.

How RWE Differs from a clinical trial?



1000s of volunteers

Extensive Data Entry and Cleaning

How RWE might work

Regular check-in with opt-out

Usual Clinical Workflow Utilized Double-reading to prove safety of autonomous AI?

	QUIC	K REFERENCE RADIOLOGY
العا	MAMMOGRAPHY	
Breast composition	a. The breasts are almost entirely fatty	
	b. There are scattered areas of fibroglandular density	
	c. The breasts are heterogeneously dense, which may obscure small masses	
	d. The breast the sensiti	s are extremely dense, which lowers vity of mammography
Masses	Shape	Oval
		Round
		Irregular
	Margin	Circumscribed
		Obscured
		Microlobulated
		Indistinct
		Spiculated
	Density	High density
		Equal density
		Low density
		Fat-containing
Calcifications	Typically benign	Skin
		Vascular
		Coarse or "popcorn-like"
		Large rod-like
		Round
		Rim
		Dystrophic
		Milk of calcium
		Suture
	Suspicious	Amorphous
	morphology	Coarse heterogeneous
		Fine pleomorphic

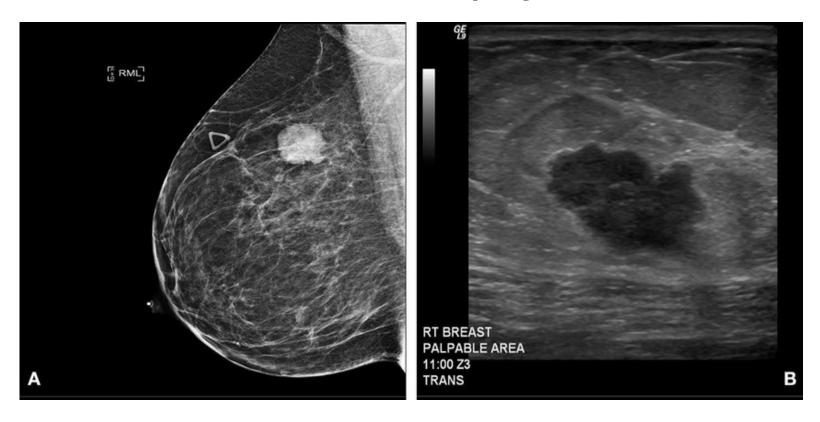
Reporting and Path
Data AutoExtracted

Other ways AI may be useful in breast imaging

- What if we could predict short-term risk of breast cancer?
 - Maybe we could use imaging and other factors (genetics, risk factors, etc) to predict 3-5 year risk.
 - That would allow individualized Screening Paradigms- MRI, US, contrast mammo for a few years rather than every year for life.
 - Maybe we could reduce risk through drug therapy in a wider group of women
 - Clairity and iCAD are working to get approval of such products. Scientific group at Karolinska also working on this idea.


Have all technical repeats done routinely before the patient leaves the exam room!

Al could alert tech of need to repeat one or more images before patient leaves the room!


NO CHANGE IN PATIENT OUTCOMES?
NO CHANGE in RISK TO PATIENT.
LIKELY SAVES MONEY for Patient and Facility.
MORE PATIENT CONVENIENCE.
REDUCES RADIOLOGIST TIME.

Al could recommend typical work-up for usual findings

CHANGE IN PATIENT OUTCOMES UNCERTAIN
UNCLEAR EFFECT ON PATIENT SAFETY
COSTS REDUCED
PATIENT CONVENIENCE SIGNIFICANTLY IMPROVED.
RADIOLOGIST PRACTICE SIGNIFICANTLY IMPROVED.

Al could eliminate work-up, go straight to biopsy.

Likely no Effect on patient outcomes.
Patient Safety likely unchanged.
Costs reduced.
Patient Convenience likely improved.
Radiologist work reduced.

TWO FINAL POINTS

- The EU and UK are ahead of the US in implementing and testing AI for clinical practice.
- The UK National Health Service **may** fund a Breast Cancer Screening Al trial in the near future that will likely cluster randomize women to-
 - Al for triage
 - Al as the second reader
 - Control group 2 radiologist readers (the Standard of Care in the UK).*

*Fiona Gilbert of Cambridge University

Image courtesy of NIST