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Machine learning and low-field MRI:
unlocking a new class of portable scanners



ISMRM 2004

20 years ago: DIY 6.5 mT

Leo Tsai



3He lung imaging at 6.5 mT

Leo Tsai

Vertical Horizontal 2009

2008



Low field: incidental vs intentional
“It enables MRI operation anywhere” “It was easier”

2010
High-field MRI instruments:

Potentially DEADLY
Vertical Horizontal

Hyperpolarized 3He

64 mT

2010

• Some applications honestly benefit from low field
• Exploit strategies that leverage compute

“Existence proof”

+ noise floor....

6.5 mT

2021

6.5 mT

MGH, Lunder 6

2023

2024



Nuclear polarization: P ≈ µB/kBT

What do we measure in MRI?

VERY SMALL!3 T

Inductive detection



3 T 0.0065 T

Acquisition time: seconds, minutes…

vs

2D Gradient echo – 1 slice – acquired at ULF
Acq. time = 52 min /  Voxel size = ( 3.9 x 7.8 x 15 ) mm3 

2005

×460

Ultra-low field MRI?

Magnetic field
×10,000

Signal-to-noise



How to solve a hard problem

1. Physics
• High-efficiency sampling strategies
• Low-noise detectors

2. Compute
• Magnetic resonance fingerprinting
• Deep learning reconstruction

Enabling MRI at ultra-low field

Maximize 
acquisition SNR}

Reduce noise
AKA “fix it in post”}



Brain imaging at 6.5 mT

6 min, 3D b-SSFP, NA=30, 50% US, α=70º, 64x75x15
Sagittal, Coronal, Axial: 2.5 x 2.5 x 8 mm

Single slice
2D GE

52 minutes

2015

2005

SagittalAxial



Object

Acquisition 
Encoding

Sensor Domain Image

Reconstruction

Image acquisition and reconstruction

PET/CT: radon sinogramUltrasound: element-time spaceMRI: Fourier k-space

“Can’t improve signal?
Just reduce noise!”

Bo Zhu



MRI acquisition and reconstruction

Acquisition 
Encoding

Reconstruction

1. NMR inductive detection
2. φ and ω modulated by magnetic gradient fields

2D Cartesian MRI forward encoding model

Object Sensor Domain Image

Fourier Transform Inverse Fourier Transform
Fourier k-space

“Signal”

Bo Zhu



Object Image

MRI acquisition and reconstruction

Acquisition 
Encoding

Reconstruction

Gridding, Density CompensationNon-Cartesian Sampling

Parallel/Multichannel Rx Coil Compression, autocalibration,
nonlinear optimization 

Undersampling Sparsifying transform,
CG optimization, backtracking line search

Sensor Domain

Fourier Transform Inverse Fourier Transform

Bo Zhu



MRI acquisition and reconstruction

Acquisition 
Encoding

Reconstruction

Gridding, Density CompensationNon-Cartesian Sampling

Parallel/Multichannel Rx Coil Compression, autocalibration,
nonlinear optimization 

Undersampling Sparsifying transform,
CG optimization, backtracking line search

Sensor DomainObject Image

Fourier Transform Inverse Fourier Transform

Bo Zhu



Sasaki, Yuka, Jose E. Nanez, and Takeo Watanabe. "Advances in visual perceptual learning and plasticity." Nature Reviews Neuroscience 11.1 (2010): 53-
60.

Refinement of perception based on exposure to and training on stimuli

 Perceptual learning is critical to robust performance in low-SNR settings
Lu, Z.-L., et al. Visual perceptual learning. Neurobiology of Learning and Memory 95, 145–151 (2011) 

Inspiration: biological perceptual vision



What animal is this?



Your brain learns from seeing many examples

• Under-sampled
• Low SNR

• Fully sampled
• High SNR

“Hallucination”



 Recast image reconstruction as a supervised learning task

AUTOMAP: Automated Transform by Manifold Approximation

Deep learning for image reconstruction

1. Learns to invert an arbitrary encoding

2. Operates on a learned joint sparse 
manifold improving SNR & accuracy

2018

Data driven approach:

Bo Zhu



Convolutional NN denoiser

Noisy image Clean image

Mapping from noisy to clean aka noise training learned from pairs of examples 

Images: Jaakko Lehtinen

Learned mapping

CNN



Sensor domain Image domain

Deep learning for image reconstruction

1. Identify sparsity in two domains
2. Learn to invert encoding

In contrast: we train on clean pairs from forward encoding model

Noise immunity develops “naturally”: 
 learned domain mapping between sparse manifolds

a la perceptual learning

Training

Recon.



Sparsity: natural separation of signal and noise

Not sparse Fourier domain:
also not sparse

Wavelet domain:
 sparse

“Brain hallucinates image using learned sparse features”

Natural images are special Noise can be anything

Possible images: 2128×128

(4,933 digits!)

 High dimensional data can be represented with fewer coefficients in a sparse domain



Sparsity: natural separation of signal and noise
 High dimensional data can be represented with fewer coefficients in a sparse domain

• NN training can encourage efficient internal representation of learned mapping
 AUTOMAP transform operates between data-defined sparse domains
 Image is hallucinated from the learned sparse convolutional feature maps

Not sparse Fourier domain:
also not sparse

Wavelet domain:
 sparse



FC1

conv
k-space

FC2          FC3                    C1                 C2

conv deconv

k1

k2

k2

k1

k3

k3

Reconstructed Image

Dense Layer Activations Convolutional Feature Maps

AUTOMAP feed-forward reconstruction



Undersampled
Fourier

Radon
Projection

Encoding

Spiral
Non-Cartesian

Fourier

Misaligned
Fourier

AUTOMAPReference Conventional

Compressed Sensing

MBIR

CG-SENSE (NUFFT)

IFFT

a b c

f g h

k l m

p q r

13.842.7

43.559.3

SNR: 14.2SNR: 33.8

AUTOMAP reconstructs all encodings

2018



AUTOMAP reconstructs 6.5 mT brain imaging
• SNR increase: 1.5 – 2.6x
• Removal of zipper artifact

AUTOMAP

FFT

• Glitches in k-space attenuated by transform
• “Unnatural” image artifacts suppressed in reconstruction

11 min acquisition, 10 of 15 slices shown

AUTOMAP learns a non-linear transform:
2021

Neha Koonjoo, Bo Zhu, Cody Bagnall, MSR

Neha Koonjoo



Your brain learns from seeing many examples

• Under-sampled
• Low SNR

• Fully sampled
• High SNR

“Hallucination”

AI network



Hallucinations and reconstruction uncertainty

Chihuahua or muffin?

Reality: reconstruction solves a well-defined math problem

Fear: AI-based reconstruction methods might not “see” your tumor



AUTOMAP

k-space

AUTOMAP solves an inverse problem

Trained on forward encoding

Recon.

Image domain



High-b DWI at 1.5 T: AUTOMAP vs. inverse FFT

2019 ISMRM



Hallucinations and reconstruction uncertainty

Danyal Bhutto

• Appropriate training corpus
• Parameterize network bias 

IEEE J Biomed. and Health Informatics 2024



64 mT Hyperfine

Study in comatose COVID19 patients

Yale New Haven Hospital

Right ACA-MCA watershed infarction

MRI at the bedside

IRB protocol with FDA clearance

Left MCA stroke w/ hemorrhagic transformation

• Comatose, ventilated
• Imaged at bedside
• Neuro-exam unavailable
• Significant neuro findings
• No patient transport

Collaborative
Science Award

Co-PIs: Sheth, Kimberly, Rosen

Yale MGH

2020



64 mT Hyperfine

Emerging clinical use cases

Yale New Haven Hospital

Right ACA-MCA watershed infarction

MRI at the bedside

IRB protocol with FDA clearance

Left MCA stroke w/ hemorrhagic transformation

• Comatose, ventilated
• Imaged at bedside
• Neuro-exam unavailable
• Significant neuro findings
• No patient transport

Collaborative
Science Award

Co-PIs: Sheth, Kimberly, Rosen

Yale MGH

2020

2021

2022
2022

2023



MRI at the bedside

Collaborative
Science Award

Co-PIs: Sheth, Kimberly, Rosen

Yale MGH

ICU

Interventional suite

Emergency department

...and emerging locations!

Photos courtesy of Dr. Kevin Sheth
Yale New Haven Hospital



64 mT Hyperfine

Super resolution + segmentation

Yale New Haven Hospital

MRI at the bedside

IRB protocol with FDA clearance

Eugenio Iglesias

MGHYale

Collaborative
Science Award

Co-PIs: Sheth, Kimberly, Rosen

2022



Hallucinations and pathology
Fear: SR-based methods might not “see” your tumor
Corollary: SR-based methods might create abnormal pathology

2023



Hallucinations and pathology
Fear: SR-based methods might not “see” your tumor
Corollary: SR-based methods might create abnormal pathology

2023



Super resolution + segmentation

Comparable accuracy to ground truth

Accurate quantitative morphology

2022

These tools have their place!



Quantitative evaluation in Alzheimer’s disease
These tools have their place!

AD: n = 24
MCI: Mild cognitive impairment n = 30 
VC Vascular cohort presenting w/o memory complaints:  n = 23

Cohort: memory disorders outpatient neurology clinic

2024

Annabele
 Sorby-Adams



AUTOMAP Reference (IFFT)k-space

Opens the space for learning arbitrary encoding schemes!

“Brain agnostic”
AUTOMAP deduces the reconstruction



Non-intuitive evolutionary optimized designs

http://www.economist.com/news/technology-quarterly/21662653-
components-become-more-elegant-software-produces-most-efficient https://ti.arc.nasa.gov/m/pub-

archive/1244h/1244%20(Hornby).pdf

Cable support system

Original 60% weight 25% weight

NASA ST5 
spacecraft antenna

Weird!



MRI spatial encoding schemes
Can we do better?



Machine learning for MRI encoding:
Automated pulse sequence discovery (AUTOSEQ)

1. Model-based computational graph

Zhu, et al. ISMRM ML Workshop 2018Zhu, et al. ISMRM ML Workshop 2018
Zhu, et al. ISMRM 2019 Power Pitch

2. Model-free reinforcement-learning

Google DeepMind



“The fastest way to 
measure T1 and T2”

• 100 RF pulses
• 10 ms fixed TR
• Acquire signal at each TR

AUTOSEQ at 6.5 mT

Discovered 1 sec pulse sequence

φ

α



AUTOSEQ at 6.5 mT

T1

5.6 % error

T2

1.7 % error

“The fastest way to 
measure T1 and T2”



Conclusions
• MRI is possible in the mT regime

Physics + Compute + Deep Learning

“Low-cost MRI could revolutionize medical care” –Steve Schiff

How will you use these tools in 21st Century?

All I ever wanted was to pick apart the [scanner]
and put the pieces back together my way  –Aesop Rock

CURE Children’s Hospital
Mbale, Uganda

Some applications honestly benefit from ML

AUTOMAP: unified reconstruction framework
•  Manifold learning with deep neural networks
 Effectively boosts SNR and image quality
 Uncertainty estimation

Super resolution + segmentation
• Accurate quantitative morphological measurement
 Volumetric measurements more robust than planar images 

AI-discovered pulse sequences for quantitative magnetic resonance
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