Beebe Symposium on AI and ML Applications in Radiation Therapy, Medical Diagnostics, and Radiation Occupational Health and Safety

Requisites and Challenges in Quantitative Imaging

Thursday, March 13

Daniel Sullivan, MD

Duke University Medical Center

Outline

- Basic concepts:
 - Quantitative Imaging (QI)
 - Standardization
- Clinical implications
 - Quantitative Imaging Biomarkers (QIB)
 - Reproducibility
- Challenges and Impediments
 - QIB Implementation
 - Standardized Image Acquisition

Variability due to radiologists' subjective interpretations is a huge problem.

- Well-documented for decades.
- True for all modalities and all clinical applications
- But, the shift to digital imaging technologies made it possible to extract information from images in a consistent way.
- Reproducibility became possible!

Variability in diagnostic error rates of 10 MRI centers performing lumbar spine MRI examinations on the same patient within a 3-week period

"... a patient should expect to receive the same radiological diagnosis regardless of which imaging center he or she visits, or which radiologist reviews the examination."

"Based on their extensive clinical experience, the authors believe that this assumption is not correct and that it can negatively impact patient care, outcomes, and costs."

STUDY DESIGN: This is a prospective observational study comparing the interpretive findings reported for one patient scanned at 10 different MRI centers over a period of 3 weeks to each other and to reference MRI examinations performed immediately preceding and following the 10 MRI examinations.

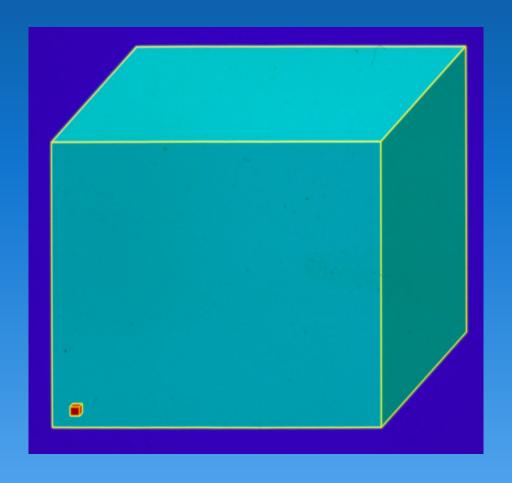
PATIENT SAMPLE: The sample is a 63-year-old woman with a history of low back pain and right L5 radicular symptoms.

Thought Experiment:

Employ a suite of Al algorithms for spine, providing each

Need VERY LARGE training datasets of standardized, population-relevant, high-quality scans.

- Gray matter cross-sectional areas
- Alignment vectors
- Bone density values
- Facet joint alignment
- Foraminal sizes
- Etc.


Clinical Imaging ...

... provides spatially- and/or temporally-localized information about some property of matter with which the energy has interacted.

What is an Image?

- an n-D data set, where n>1;
- each pixel value provides spatially- and/or temporally localized information about some property of matter with which the energy has interacted;
- "interpretation"/quantification requires extracting a sub-set of data ("segmentation");
- in biology, usually a noisy, blurry dataset.

Cell Size vs. Voxel Size

~ 1 Billion cells (10⁹) per mm³

Quantitative Imaging Biomarkers Alliance (QIBA): Background Quantitative Imaging Biomarkers Alliance Alliance

- Started by RSNA in 2007
- Mission: Improve the value and practicality of quantitative imaging biomarkers by reducing variability across sites, devices, patients, and time.
- "Build measuring devices rather than imaging devices"

Imaging Assays

Assays are characterized by their:

- Technical Performance
- Clinical Performance
 - Clinical validation
 - Clinical utility

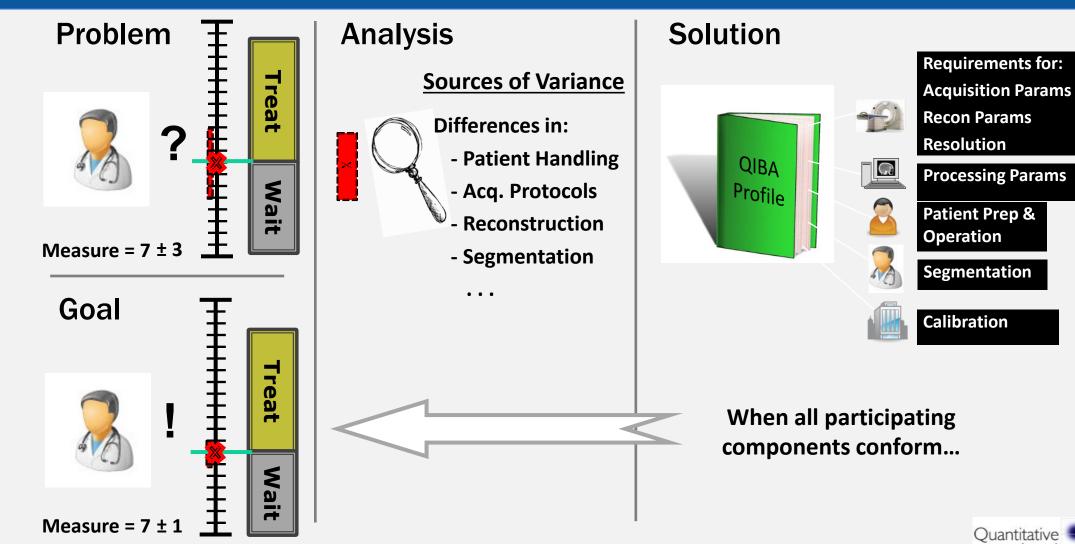
Metrology Working Group

- Metrology is the science of measurement:
- "A measurement result is complete only when it is accompanied by a statement of the associated uncertainty,."

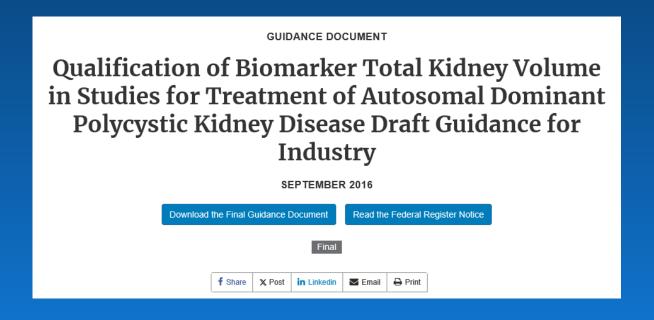
- NIST Policy Statement

QIB Technical Parameters

- QIBA Metrology Working Group advice —
- the three most important technical parameters to characterize for an imaging biomarker are:
- Bias
- Precision
- Linearity


Precision

- Repeatability
 - precision that occurs with identical or near-identical conditions.
- Reproducibility
 - precision when location, operator, measuring system, or other factors differ.


2017 Fleischner Society Guidelines for Management of CT Pulmonary Nodules

Nodule Type	Size			
	<6 mm (<100 mm³)	6-8 mm (100-250 mm ³)	>8 mm (>250 mm³)	Comments
Single				
Low risk [†]	No routine follow-up	CT at 6–12 months, then consider CT at 18–24 months	Consider CT at 3 months, PET/CT, or tissue sampling	Nodules <6 mm do not require routine follow-up, but certain patients at high risk with suspicious nodule morphology, upper lobe location, or both may warrant 12-month follow-up (recommendation 1A).

Overall Goal of QIBA

FDA Biomarker Qualification Program Sept 2016

"TKV [as measured by MRI, CT or ultrasound] as a prognostic biomarker for clinical trial enrichment in patients with ADPKD."

No specifications for precision were required, because the polycystic kidneys are so much larger than normal.

Latest Articles | All Issues | Collections ▼ | For Authors ▼ | Diagnosis Please | Multimedia

Home > Radiology > Vol. 314, No. 2

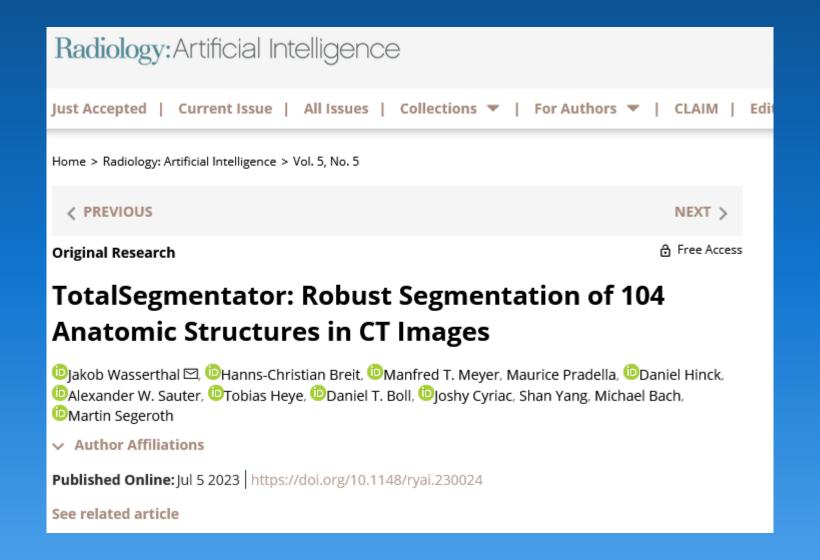
< PREVIOUS

NEXT >

Original Research Genitourinary Imaging

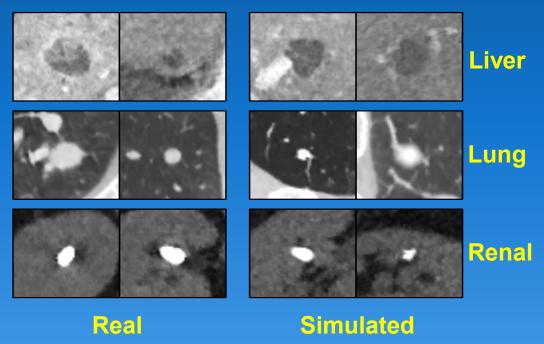
Automated CT Measurement of Total Kidney Volume for Predicting Renal Function Decline after ¹⁷⁷Lu Prostate-specific Membrane Antigen-I&T Radioligand Therapy

- DLisa Steinhelfer* ⊠, DFriederike Jungmann*, DManuel Nickel, DGeorgios Kaissis,
- Marie-Luise Hofer, 🕩 Robert Tauber, 🕩 Christoph Schmaderer, 🕩 Isabel Rauscher, 🕩 Bernhard Haller,
- Marcus R. Makowski, Matthias Eiber**, Rickmer F. Braren**


TKV QIB (Steinhelfer)

- "A 10% or greater decline in TKV at 6 months ... is an easily accessible imaging-derived marker for predicting a 30% or greater decline in eGFR at 12 months."
- "This imaging marker could be a ...parameter in decisionmaking to continue or discontinue treatment after 4 cycles of ¹⁷⁷Lu-PSMA-I&T radioligand therapy."
- "Furthermore, it presents opportunities for adjusting the treatment cycle interval or intensity, implementing therapy pauses for stable disease, or exploring a de-escalation treatment strategy."

True Biologic Change ...


... is approximately twice the variability

(Clinical Significance of that change needs to be determined by clinical studies.)

Synthetic Data

Which lesions are real?

Radiology

Association of Epicardial Adipose Tissue Changes on Serial Chest CT Scans with Mortality: Insights from the

National Lung Screening Trial

Isabel L. Langenbach, MD • Ibrahim Hadzic, MSc • Roman Zeleznik, PhD • Marcel C. Langenbach, MD • David Maintz, MD • Thomas Mayrhofer, PhD • Michael T. Lu, MD, MPH • Hugo J. W. L. Aerts, PhD • Borek Foldyna, MD, PhD

From the Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Ste 400, Boston, MA 02114 (I.L.L., M.C.L., T.M., M.T.L., B.F.); Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany (I.L.L., M.C.L., D.M.); Artificial Intelligence in Medicine Program, Mass General

Clinical data limitations (Langenbach)

- Two-year imaging follow-up was short
- Important covariates (eg, steroid or statin use) not collected in the NLST.
- Medical therapies, lifestyle risk factors, not collected.
- Body mass index and BSA available at baseline only.
- Need comprehensive longitudinal data collection to understand the dynamic changes in body composition.

Quantitative Imaging Committee (QUIC)

...And QIN, EIBALL, J-QIBA, EANM, AIUM, ALA, SNMMI, ISMRM, and others.

What is the Impediment to Implementation of QIB's?

- Few clinical treatment decisions are driven by a quantitative imaging result.
- Other contributing factors:
 - Inertia
 - Insufficient resources to collect clinical data
 - Perverse financial incentives in U.S. healthcare
 - Conservative (cautious) mindset

Challenges to adoption of standardization

- Inertia
 - Inherent; passive; subconscious
- Resistance to mandates or authority
 - · Active; individuality; independence
- Skepticism about need or value
 - · Will outcomes improve?
- Professional organization "turf" (territoriality)
 - · Boundaries; ownership; credit
- Education; publicity; awareness
- Regulatory agency differences
 - · Geographic; political
 - Absence of any national QA/QC program for QI.

Lessons learned in the Quantitative Imaging Biomarkers Alliance (QIBA)

Standards documents must:

- 1. Have a clear rationale,
- 2. Be based on published data as much as possible or expert consensus opinion when data are absent,
- 3. Reflect broad stakeholder input,
- 4. Reflect an open, consensus process, and
- 5. Evolve or be revised periodically.

Take-home Message?

Prioritize and Incentivize Reproducibility

Thank you.

