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Precision Medicine

= Uses one’s genes,
proteins, environment,
and lifestyle information
to prevent, diagnose, or
treat disease

Target the right patients
with the right treatments
at the right time
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How is Al Changing the Future of

Precision Medicine?

Identifying Potential ) Identifying

Drug Targets ® ® Causal Genes
Real-Time Monitoring . Phenotypic & Genetic
of Patient Health ® — [ ® Heterogeneity

Al-Powered
Early Detection @
of Diseases

® Changing Role of
Physicians



Al Applications in Medicine

» Disease diagnosis, screening, monitoring, and treatment
» Large language models (LLMs)

« Clinical decision support

 Virtual reality and augmented reality

* New drug discovery

* Virtual clinical trials

« Telemedicine

* Human machine interface

« Digital twins for health

Modern medicine is increasingly becoming a science of information
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What is a Digital Twin?

= A digital representation of a real-world physical system or process
that serves as the effectively indistinguishable digital counterpart of the
original for practical purposes such as simulation, integration, testing,
monitoring and maintenance
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NATIONAL
ACADEMIES

Foundational
Research Gaps and
Future Directions
for Digital Twins

sus Study Report
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A Human Digital Twin

A dynamic virtual representation of an individual, an organ, or an
organ system based on multiscale modeling of multimodal data
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DT vs AI/ML vs Computational Models

« While they form an important approach toward virtual replica of a
physical entity, neither computational modeling nor AI/ML algorithm
is the totality of DT

« A DT must have the three components: a physical entity, a virtual
replica, and a connection between the two

e A DT should be individualized, interconnected, interactive,
informative, and impactful (5Is)
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Main Applications of DT in Health
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Digital Twins for Precision Medicine

Personal Phenotypes Digital Twin Personalized
i Simulation Care Trajectories
Using HPC
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Universal
Database /

Models

T Improves

Predicts

Choice-Specific
Trajectories

Empower

Enables
Digital
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Twin Updates
U |
Patient |
Progress ;
Op'gr_nal Determines
Decision-
Making

DT for Radiation Oncology

Components

« Multimodal patient data

« Multiscale modeling

« High-performance computing

Benefits

« Predicting patient outcomes
« Treatment plan optimization
« Innovative research tools

Barriers

» Centralized data commons

« Patient-specific data assembly
* Multiscale modeling

J.Jensen and J. Deng, https://doi.org/10.1145/3543873.3587688



Potential DT Applications in RT

Real-time monitoring and comprehensive analysis of cancer patient
health status undergoing RT

DT-enabled optimal treatment pathway

Treatment plan optimization and adaptation based on DT simulations
of individual cancer patient, considering their anatomy, treatment
history, RT toxicity, treatment goal, and personal preferences

Virtual clinical trials with DT-enabled patient control

A linac DT assisted with an agile robot for proactive maintenance and
automated QA
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Digital Twin Blueprint

Digital Twin Blueprint « “All models are
WHAT ARE THE GOALS For THE wrong but
DIGITAL TWIN? SO1me are
useful”, George
Box
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Modeling of Time-Series Patient Data

* Collected at multiple time points before, during, and after
cancer treatments

« Atime-series data correlate with treatment outcomes, QoL

* More precise and effective treatments and interventions
and faster responses to mitigate adverse etfects

Time Series Analysis Plots
Dickey-Fuller: p=0.00000

100000

2017
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Forecasting Metabolic Indices Using LSTM
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Latent Ordinary Differential Equations

* Reduced-order methods can be used to “smooth” noisy data and produce more
robust Neural Ordinary Differential Equations in the latent variable space
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Forecasting Metabolic Indices Using LODE
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Radiotherapy Work{low

Radiation Therapy Clinical Workflow

Begin End
Consult Simulation Planning QA | Treatments (N) |’ Follow-up >

! ! ! ! ! !

EM PACS TPS ROIS EMR
Diagnosis CT, MRI, PET Plans, doses Stage, prescription, modality, fields Prognosis

Patient-specific Digital Twin

(T Cramsrasion | [ st 7 s Assion | oty

Patient Outcome Trajectory
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Cancer Patient Digital Twin

Patient health prediction

* Treatment outcome trajectory

= Shared decision making with patient
engagement

= An early warning system for whole body all
organ monitoring of toxicity induced by RT

aaaaaaaaaaa

Mar 2025

May 2025 Jun 2025 Jul 202! Aug 202!
Date
rre edicted RP Grade (Random Forest): 2 Q
©on 2025-03-03. Please optimize treatment by 2025-02-24. SLIDE 18



Biology-Guided Radiotherapy

PET/CT merge - PET scan before treatment PET scan in treatment

H H H ‘,) N
A reaction diffusion model C ~ V. (DVC) + pc(l B _) R(x. t._Dose_]c('l B E)

including RT-induced cell death ot k.

Develop digital twins to predict NSCLC response to RT via integrating
mechanistic modeling with patient-specific longitudinal PET scans
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Protein & Gene

Multiscale Modeling

Clinical
Cellular analysis
Sputum  ——— (flow cytometry, cell
_'—» counting, etc.)
Blood » Biochemical
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|
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Challenges

Data Acquisition, Integration, Standard, and Quality
- Multimodal data acquisition, integration and curation
- Data standards, quality and accuracy

Multiscale Modeling and Simulations

- Complex human behaviors with vast dynamic impacting factors and sophisticated causal relations
- Dynamic biological phenomena at multiscale in space-time

Responsible Al

- Fairness, transparency (explainability), accountability, robustness, safety, privacy, and security
Computing Infrastructure
- HPCs, quantum computing, and their access
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Multimodal Data Fusion

= Functional and molecular imaging

» Radiomics (deep learning-augmented analysis of
radiology)

» Liquid biopsies (e.g., circulating tumor cells)

= Whole-slide, highly-multiplexed digital pathology

= Genomic profiling

= Single-cell profiling (e.g., sScCRNA-seq)

» Patient-derived cell cultures, organoids, & assays

= Intravital imaging (live microscopy within a patient)

» Fitness trackers & wearables

» |[mplantable sensors

Each technology gives new light on a patient’'s health state, but it is
challenging to coherently fuse these together
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» Individual cell processes and dynamics
» [nteractions between heterogeneous cells

» Physical constraints (e.g., oxygen diffusion,
mechanical barriers)

» Procedures can cause toxicity, resistance,
and long-term adverse effects

= Constant interactions with environment

» Social determinants influence one’s health
and wellbeing across life course

» Many factors involved (e.g., lifestyle, dietary,
family history, medication)
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Racially biased

Biases reinforced;
disparities

exacerbated

Biased
interactions with

people

EHR data

Responsible Al

Al programmed
with biased data

/

Biased Al

algorithm

= Require right people, right
processes, and right technologies

» Clinical practitioners need to be
trained to understand what
responsible Al means, what tools
and metrics are available to
quantify and evaluate
responsible Al

= Appropriate technologies need to
be used to enforce responsible Al
from the beginning to the end for
every model, every time

SLIDE 24



« Human digital twins fully functional and autonomous as HDT agents
 True companions and safeguards of people’s health

e Interact with humans in physical world, with other HDT agents in
virtual world

« Human digital twin simulations from birth to death

Ability to simulate the future has been a motive for human intelligence evolution
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Conclusions

« Human digital twins have great potential in precision medicine
» Deep understanding of human biology is the key

« Multimodal data integration and multiscale modeling are
challenging

« We must tame Al before the arrival of AGI

» Cross-disciplinary collaborations are essential

Yale scHOOL OF MEDICINE ... SLIDE 26



Acknowledgement

Digital Twins for Health Consortium

Yale scCHOOL OF MEDICINE SLIDE 27



Digital Twins for Health Consortium

Yale scCHOOL OF MEDICINE

Yale

Florida A&M University
George Washington University
Indiana University

MIT

Ohio State University

Temple University

University of Virginia
University of Kentucky
University of Texas Austin
University of Texas Health

U of California San Diego

U of Maryland Baltimore County
UMass Amherst

University of South Carolina
University of Pennsylvania
University of Central Florida
University of South Florida
University of Minnesota
Virginia Tech

Mayo Clinic

IBM

Accenture SLIDE 28



DT4H Ecosystem
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Resources Research News & Events About Us

Digital Twins for Health

Digital Twins for Health
Consortium

Forging a leading international network in developing and applying digital twins for better 4
health and well-being in collaboration with all the stakeholders in the healthcare spectrum.

https://dt4h.org



Thank You

Yale Smart Medicine Lab

PI: Jun Deng, PhD
jun.deng@yale.edu

@JunDengYale
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