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AlI/ML is being used widely throughout the entire
patient journey

Al can be applied throughout the workflow
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Deep Learning in Radiological Imaging
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Al is being used extensively in image reconstruction

L)

Deep Learning Image Reconstruction for CT: Technical Principles and
Clinical Prospects

Koetzier LR and Mastrodicasa D et al. Published Online: January 31, 2023

https://doi.org/10.1148/radiol.221257

University of Colorado
Anschutz Medical Campus

Deep learning reconstruction (DLR) algorithms can be
applied in the raw data domain, image domain, or both.

Compared with filtered back projection and hybrid
iterative reconstruction (HIR), DLR provides improved
image quality.

DLR allows for radiation dose reductions of 30%—71%
compared with HIR with maintained image quality due to
noise reduction.

Deep learning-based metal artifact reduction may remove
metal artifacts more accurately than current state-of-the-
art methods.

Radiology




Al is being used extensively in image reconstruction
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Segmentation (delineation of object boundary) is often
used in oncology and radiation oncology

Quantifying tumor burden at a single time point and longitudinally

Contouring of tumors and organs at risk is key in radiation therapy planning

@]l University of Colorado
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Radiation Oncology Research: Contouring Variability

Original Research Article

A prospective in silico analysis of interdisciplinary and interobserver )

Original Research Article : iahility i ; i i i i Tt

o _ . . spatial variability in post-operative target delineation of high-risk oral  %&&
An m-s_:hco quallry_ assurance studj_,r of contourm_g target volumes in :.}.. cavity cancers: Does physician specialty matter?
thoracic tumors within a cooperative group setting ™ L |
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Adrenal gland segmentation

5 expert radiologists vs.
automatic model

Inter-reader dice score coefficient
(DSC) was not statistically
significant from model-reader
DSC (p = 0.35)

Machine Learning for Adrenal Gland Segmentation and
Classification of Normal and Adrenal Masses at CT
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Cory Robinson-Weiss, MD* ® Jay Patel, BS* * Bernardo C. Bizzo, MD  Daniel I. Glazer, MD
Christopher P, Bridge, DPhil * Katherine P Andriole, PhD * Borna Dabiri, MD, PhD * John K. Chin, MD
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Automatic Segmentation

&> Neuro-Oncology

21(11), 1412-1422, 2019 | doi:10.1093/neuonc/noz106 | Advance Access date 13 June 2019

Automatic assessment of glioma burden: a deep

learning algorithm for fully automated volumetric and

bidimensional measurement

Ken Chang,! Andrew L. Beers,' Harrison X. Bai,’ James M. Brown, K. Ina Ly, Xuejun Li,

Joeky T. Senders, Vasileios K. Kavouridis, Alessandro Boaro, Chang Su,” Wenya Linda ™

Otto Rapalino, Weihua Liao, Qin Shen, Hao Zhou, Bo Xiao, Yinyan Wang, Paul J. Zhang
Marco C. Pinho, Patrick Y. Wen, Tracy T. Batchelor, Jerrold L. Boxerman, Omar Amaout
Bruce R. Rosen, Elizabeth R. Gerstner, Li Yang, Raymond Y. Huang, and Jayashree Kal)

MNeurointormatics (2021 19:127-140
hittps:/fdol.org/10.1007/512021-020-09477-5

SOFTWARE ORIGINAL ARTICLE @ ]

Check far
DeepNeuro: an open-source deep learning toolbox updates

for neuroimaging

Andrew Beers' - James Brown' - Ken Chang’ - Katharina Hoebel' - Jay Patel' - K. Ina Ly - Sara M. Tolaney? -
Priscilla Brastianos? . Bruce Rosen’ - Elizabeth R. Gerstner'3 . Jayashree Kalpathy-Cramer!

Published online: 23 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020
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Neuro-Oncology

24(2), 289299, 2022 | https://doi.org/10.1093/neuonc/noab151 | Advance Access date 26 June 2021

Deep learning-based automatic tumor burden
assessment of pediatric high-grade gliomas,
medulloblastomas, and other leptomeningeal seeding
tumors

Jian Peng,” Daniel D. Kim," Jay B. Patel, Xiaowei Zeng, Jiaer Huang, Ken Chang, Xinping Xun,
Chen Zhang, John Sollee, Jing Wu, Deepa J. Dalal, Xue Feng, Hao Zhou, Chengzhang Zhu,
Beiji Zou, Ke Jin, Patrick Y. Wen, Jerrold L. Boxerman, Katherine E. Warren, Tina Y. Poussaint,
Lisa J. States, Jayashree Kalpathy-Cramer, Li Yang, Raymond Y. Huang, and Harrison X. Bai



Automatic segmentation and tracking of brain metastases

Manual Automatic




Response Assessment
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Volume vs AutoRANO-BM
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Opportunistic Screening

- -
CT Body Composition Analysis Population Scale CT Body Composition Data Mtum medl CIne

Article https://doi.org/10.1038/s41591-023-02232-8

Body compositionandlung
cancer-associated cachexiain TRACERXx

Better Risk prediction
and Prognostication

= Risk of cardiovascular disease?
= Risk of kidney disease?
= Risk of COVID-19?

Pkt ORIGINAL RESEARCH ‘ Annals of Internal Medicine
e Opportunistic Screening for Osteoporosis Using Abdominal Computed
 CompartoNommaPopltons Tomography Scans Obtained for Other Indications
Perry J. Pickhardt, MD; B. Dustin Pooler, MD; Travis Lauder, BS; Alejandro Mufioz del Rio, PhD; Richard J. Bruce, MD; and Neil Binkley, MD
Review

Role of Machine Learning-Based CT Body Composition in Risk
Prediction and Prognostication: Current State and
Future Directions

Opportunistic Screening: Radiology Scientific Expert Panel

Perry ]. Pickhards, MD © Ronald M. Summers, MD, PhD * John W. Garrett, PhD * Arun Krishnaraj, MD
Tarig Elhakim 1?*@, Kelly Trinh 3, Arian Mansur ©, Christopher Bridge 2 and Dania Daye 24* Sheela Agarwal, MD  Keith J. Dreyer, DO, PhD ¢ Gregory N. Nicola, MD
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Applications of Generative Al in Medical Imaging

e e e e
- D=089482 Classification
Reconstruction Registration (Prostate Detection
(Brain MRI De-Aliasing) (Ultra-sound & MRI) Microscopy) (Brain Disease)

Synthetic
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unconditional synthesis

Number of methods in:

Classification @ Registration

" . Denoising @ Detection ]
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Uni )
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azeminia et al, Artificial Intelligence In Medicine 2020




It is becoming really easy to create an Al algorithm
today!

Title

Performance of an Al y of prematurity

Otentially blinding eye disorder that affects
and treatment of ROP is critical for preserving vision

. ‘ PIn recent years, artificial intelligence (Al) algorithms have shown
An n Otat|0ns Omated diagnosis of ROP. In this study, we evaluated the performance
BTithm for the diagnosis of ROP using a dataset of fundus images from

ature infants.

We trained a convolutional neural network (CNN) on a dataset of 5,000 fundus images
from premature infants with and without ROP. We evaluated the performance of the CNN
on a separate dataset of 1,000 fundus images from premature infants, including 500
images with ROP and 500 images without ROP. We measured the sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and accuracy of the CNN

for the diagnosis of ROP.

Our results showed that the CNN achieved a sensitivity of 95.2%, a specificity of 93.8%, a
PPV of 92.1%, an NPV of 96.2%, and an accuracy of 94.5% for the diagnosis of ROP. The
area under the receiver operating characteristic curve (AUC-ROC) was 0.96, indicating

excellent diagnostic accuracy.

Our study demonstrates that an Al algorithm based on a CNN can achieve high diagnostic
accuracy for the diagnosis of ROP. The use of Al algorithms for the automated diagnosis
of ROP has the potential to improve the efficiency and accuracy of ROP screening

programs, particularly in resource-limited settings where access to ophthalmologists and

specialized equipment may be limited.

S o Yacksb-Agorithm
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Al Algorithm Development Funnel
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Challenges in Al model development/deployment

Generalizability— models are brittle and do not generalize across scanners, populations,
disease presentation

Shortcut learning
Model predictions may not be repeatable!

Calibration- commonly used approaches for binary models can lead to poorly calibrated
models

Silent failures — models may fail without indication ("confidently wrong”)
Overfitting — reported model performance can be over-optimistic
Explainability/interpretability

Models can be biased (in hard to detect ways)

Incorrect metrics

Incorrect ground truth

Inadequate Testing and Validation in the field

@I University of Colorado
Anschutz Medical Campus



FUTURE-AI: international consensus guideline for trustworthy
and deployable artificial intelligence in healthcare

Karim Lekadir,™ Alejandro F Frangi,>* Antonio R Porras,” Ben Glocker,® Celia Cintas,”
Curtis P Langlotz,® Eva Weicken,” Folkert W Asselbergs,'®** Fred Prior,*? Gary S Collins,*’
Georgios Kaissis,** Gianna Tsakou,*” Iréne Buvat, '® Jayashree Kalpathy-Cramer,*’

John Mongan,'® Julia A Schnabel,*® Kaisar Kushibar, Katrine Riklund,”° Kostas Marias,?*
Lameck M Amugongo,®? Lauren A Fromont,?* Lena Maier-Hein,?* Leonor Cerda-Alberich,*
Luis Marti-Bonmati,”® M Jorge Cardoso,”” Maciej Bobowicz,”® Mahsa Shabani,?’

Manolis Tsiknakis,?! Maria A Zuluaga,*® Marie-Christine Fritzsche,>! Marina Camacho,’
Marius George Linguraru,®” Markus Wenzel,” Marleen De Bruijne,’® Martin G Tolsgaard,**
Melanie Goisauf,*®* Ménica Cano Abadia, Nikolaos Papanikolaou,® Noussair Lazrak,’
Oriol Pujol,* Richard Osuala.' Sandv Napel.?” Sara Colantonio.*® Smriti loshi.! Stefan Klein.??
Susanna Auss6,>® Wendy

on behalf of the FUTURE-/

Al tools in healthcare should be:

\
FAIR UNIVERSAL: TRACFABLE  USABLE ROBUST EXPLAINABLE
@]l University of Cc Fig 2 | Organisation of the FUTURE-AI framework for trustworthy artificial intelligence (Al) according to six guiding
Anschutz Med principles—fairness, universality, traceability, usability, robustness, and explainability




FUTURE-AI: international consensus guideline for trustworthy
and deployable artificial intelligence in healthcare

2. Development phase
R2: Collect representative real world data
F2: Collect data on individuals’ attributes
G2: Implement measures for privacy and security
G3: Implement measures against identified Al risks
Us2: Implement human-Al interaction mechanisms

1. Design phase 3. Evaluation phase
G1: Engage interdisciplinary stakeholders G4: Define adequate evaluation plan
Us1: Define intended use and user requirements Un3: Evaluate using external and/or multisite data
Un1: Define clinical settings and related variations F3: Evaluate fairness and debiasing measures
R1: Define all sources of data heterogeniety =~ 4= Us4: Evaluate user experience and acceptance
F1: Define all sources of bias Us5: Evaluate clinical utility and safety
E1: Define explainability needs R3: Evaluate robustness against real variations
G6: Investigate application specific ethical issues E2: Evaluate explainability with end users
G7: Investigate social and societal issues T2: Document Al tool including evaluations

Un2: Use community defined standards
T1: Implementrisk management process

4. Deployment phase
Un4: Evaluate local clinical validity
T3: Define mechanisms for quality control
T4: Implement periodic auditing system
T5: Implement logging system
Us3: Provide training materials and activities
G5: Comply with Al regulatory requirements
Té6: Establish mechanism for Al governance

Fig 3 | Embedding the FUTURE-AI best practices into an agile process throughout the artificial intelligence (Al)
lifecycle. E=explainability; F=fairness; G=general; R=robustness; T=traceability; Un=universality; Us=usability

@]l University of Colorado _
Anschutz Medical Campus https://future-ai.eu/



Checklist before model deployment

v What is repeatability (test-retest performance) of the model?
v" What is the reproducibility/ portability performance?

v Does the system have an “out of distribution” detector?

v" How well is the model calibrated?

v" How often does the model make grave errors? Is the model confidently
wrong?

v |s image quality assessed?

v Does the image contain enough information to make a prediction?

v Can the model be adapted locally?

v" What is the continuous monitoring plan?

@I University of Colorado
Anschutz Medical Campus



FDA Perspective is worth considering

Preparing for the Unknowns of Large Language Models and Generative Al

Applications of generative Al, such as large language models (LLMs), present a
unique challenge because of the potential for unforeseen, emergent
consequences; the FDA is yet to authorize an LLM.

Even “Al scribes” meant to summarize medical notes can hallucinate or include
diagnoses not discussed in the visit.

Because we cannot unduly burden individual clinicians with such oversight, there
IS a need for specialized tools that enable better assessment of LLMs in the
contexts and settings in which they will be used.

JAMA | Special Communication | AlIN MEDICINE

FDA Perspective on the Regulation of Artificial Intelligence in Health Care
and Biomedicine

@ UnIVGI‘SIty of Oglorado Haider J. Warraich, MD; Troy Tazbaz, BS; Robert M. Califf, MD
Anschutz Medical Campus



FDA Perspective is worth considering

The Central Importance of Al Life Cycle Management

“Given the capacity for “unlocked” models to evolve and Al’s sensitivity to
contextual changes, it is becoming increasingly evident that Al performance
should be monitored in the environment in which it is being used.”

"health systems will need to provide an information ecosystem much like that
monitoring a patient in the intensive care unit.

Finding the Balance Between Big Tech, Start-Ups, and Academia

The Tension Between Using Al to Optimize Financial Returns vs Improving Health
Outcomes

“the relationship between optimizing finances and improving health outcomes for
patients and communities is complex and at times at odds”

@]1 University of Colorado
Anschutz Medical Campus



The Future of Al:
Unlocking
Possibilities

@]l University of Colorado
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“Brittleness” of machine learning models

Deep learning models do not generalize well
Only 6% of published Al studies have external validation (Kim
et al., KUIR, 2019)

Data heterogeneity can lead to poor model performance on external
datasets.

@I University of Colorado
Anschutz Medical Campus



Distribution differences

A B
Institution 1 Institution 2 Institution 1 Institution 2
HEE EER HEE NN
HEE ([ HEE HENR
HEEE EEE HEEE EEN
| Label 1 . Scanner Type 1
.~ Label2 ~ Scanner Type 2

@ University of Colorado
Anschutz Medical Campus

Black or african american patients (ground truth)
fatt
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Impact of acquisition heterogeneity persists through the
network
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“Portability challenges”

Training set

L)

Cervigram V1
algorithm

Cervigram V2
algorithm

Good case-
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Cervigram V1+V2

University of Colorado

Anschutz Medical Campus
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DL Model predictions are not repeatable!

A replicate set of images yield different results (lack of repeatability)

(b) Model prediction: 0.98 (Pre-cancer, )

(a) Model prediction: 0.01 (Normal)
Fig. 1: Illustration of repeatability issues from deep learning models
on different images of a cervix with precancerous lesions from the
same patient taken the same day. A binary model without dropout layers
generated the following outputs. (a) the binary model predicts a normal cervix

(severity score: 0.01). (b) the binary model predicts pre-cancer (severity score:
0.98).
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H} * P90 ,7°% 44 ".’:.
H 0.25~ &'l.” ‘s - "‘
Q > . b e * :
o 0.001 or2b%, oo “©wiee.

Knee osteoarthritis

Test
2 i
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| %‘
"

¥

GT label: Doubtful - Target score: 1

5-class pred.: 2.03
MC 5-class.: 1.36

5-class pred.: 0.02
MC 5-class.: 1.27

Little published literature on model repeatability/reproducibility

Many models are not repeatable when tested!.

University of Colorado

@]’ Anschutz Medical Campus
Desai K et al. IJC 2021;

Lemay et al, NPJ Digital Med, 2022



Problem 2: Test-retest repeatability can be an issue

Challenge: A replicate set of images from a woman during same examination

with same device, yielded different results (lack of repeatability)

Comparison of 2 AVE Scores from different images of the same women

e Case

* Control
This issue was seen soon after the initial publication B
@]’ University of Colorado Desai K et al. 1JC 2021;
Anschutz Medical Campus
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+*PAIR EXPLORABLES

From Confidently Incorrect
Models to Humble Ensembles

Combining Models Reduces Overconfidence

By averaging the output of multiple models, a technique known as ensembling, we can create a model

1 Piecewise Linear Modél

20 Piecewise Linear Models




Solution 2: Monte Carlo approaches may improve
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@]l University of Colorado
Anschutz Medical Campus Lemay et al, NPJ Digital Med, 2022
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Metrics, ground truth

Accuracy is often used in ML publications but not a useful metrics
especially in low prevalence settings

AUROC is often the metric of choice but does not capture the
distribution of scores well

Technical metrics don'’t often translate to clinical utility

@I University of Colorado
Anschutz Medical Campus



Ground truth

Ground truth can be murky
Human derived ground truth case be highly variable (and wrong)

IL ROC curve for i-ROP DL algorithm vs expert readers for plus disease
diagnosis (n=100)
1.04 A
e V. T i-ROP DL algorithm
0.8+
&
= *
E # Readerl
= O Reader 2
& 0.6+ A Reader3
- - - g o] O Readerd
= ¢ Reader5
M Reader &
0.4+ QO Reader7

0.5

D_
=

0 0.1 0.2 0.3
False-Positive Rate

Lycke et al, Journal of Lower Genital Tract Disease 2024
Campbell et al, Ophthalmology 2016;123:2338-44.

@]l University of Colorado
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Models don’t inherently say “l don’t know” and may fail

silently
Deep learning approaches (typically) do not provide measures of [segmentation] uncertainty

Example histogram of dice scores for segmentation shows long tail of low-quality segmentations

Histogram of Scores
I | I

sl * K * anaae'— —————— . —-I- 025

02

B

015

Frequency

0.1r

I 1otal Tumor
[ Core Tumor
[ ] Active Tumor

- 0.05

Accuﬁracy (5ICE Sébre}

| IR P R Y IS . Y [
@]‘I 3-D Convolutional Neural Networks for Glioblastoma Segmentation
Darvin Yi, Mu Zhou, Zhao Chen, Olivier Gevaert
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Generate continuous output variables instead of binary
values, incorporate uncertainty, calibrate models

www.nature.com/npjdigitalmed

npj ‘ Digital Medicine

a
ARTICLE OPEN ‘ M) Check for updates ® Normal
® Pre-Plus
: : : : ® Plus
Siamese neural networks for continuous disease severity
evaluation and change detection in medical imaging
Matthew D. Li®', Ken Chang’, Ben Bearce', Connie Y. Chang® Ambrose J. Huang? J. Peter Campbell (3%, James M. Brown (",
Praveer Singh', Katharina V. Hoebel', Deniz Erdogmus®, Stratis loannidis®, William E. Palmer?, Michael F. Chiang (*° and
Jayashree Kalpathy-Cramer ('™
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Overfitting is a common problem in the literature

The literature is rife with over-optimistic reported performance,
primarily due to a lack of statistical rigor.

Feature Random  Normalization —Hyperparameter Model
Extraction Feature Tuning Selection
Generation [::,':I
HHHH @ o
R 1y @ i
I
= . = | Final
Ry, [:'] — Fina
Model
R
No Information Leak
[::h ' -
, - x
¢ | 4T, QTES - &

ORIGINAL RESEARCH - COMPUTER APPLICATIONS

Inconsistent Partitioning and Unproductive Feature
ﬂ Associations Yield Idealized Radiomic Models

Mishka Gidwani, PhD s Ken Chang, MD, PhD  Jay Biren Patel, BS * Katharina Viktoria Hoebel, MD
Syed Rakin Abmed, BA  Praveer Singh, PhD * Clifton David Fulles, MD, PhD * Jayashree Kalpathy-Cramer, PhD

Final
Model

Dataset Train
Normalization Normalization
[TTT1]
I
MR Hrai R ’Tmin
< oR R O trai > TTTT 11
Hvain HMest
O vain Oes
HHHH H R
R’Train 1
I
[[II]1]
Split
Normalization

Gidwani et al, Radiology, 2022



Bias and Fairness

Toward fairness in artificial intelligence for
medical image analysis: identification and
mitigation of potential biases in the roadmap from
data collection to model deployment

Karen Drukker®,>* Weijie Chen,” Judy Gichoya®,*
Nicholas Gruszauskas®," Jayashree Kalpathy-Cramerc,
Sanmi Koyejo,* Kyle Myers®,f Rui C. S4©,2" Berkman Sahiner,”
Heather Whitney®,® Zi Zhang,' and Maryellen Giger®®

d
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Challenges in real life deployment

ARTIFICIAL INTELLIGENCE

Google’s medical Al was super accurateina
lab. Real life was a different story.

If Al is really going to make a difference to patients we need to know how it
works when real humans get their hands onit, in real situations.

By Will Douglas Heaven April 27,2020

* Low image quality in practice (Al was trained in high quality)
« Poor internet slowed workflow

@I University of Colorado
Anschutz Medical Campus
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Checklist before model deployment

v What is repeatability (test-retest performance) of the model?
v" What is the reproducibility/ portability performance?

v Does the system have an “out of distribution” detector?

v" How well is the model calibrated?

v" How often does the model make grave errors? Is the model confidently
wrong?

v |s image quality assessed?

v Does the image contain enough information to make a prediction?

v Can the model be adapted locally?

v" What is the continuous monitoring plan?

@I University of Colorado
Anschutz Medical Campus



(Hard) Lessons Learned

v Continuous monitoring is imperative (how?)

v External validation (needed? Or hyperoptimze locally?)

v Continuous scores might be preferable to binary (or ordinal) where the
disease lies on a severity spectrum

v' Many commonly used explainability methods have issues — need
rigorous evaluation

v" Need to evaluate model repeatability

@I University of Colorado
Anschutz Medical Campus



Conclusion

Al is here to stay (IMO) and impact all aspects of clinical care

There is tremendous potential, but we need to be vigilant before,
during and after implementation

Implementing trustworthy Al is team science

@I University of Colorado
Anschutz Medical Campus



Does Al have super-human capabilities?

Article | Published: 19 Februery 2018 . . Predicting sex from retinal fundus
Prediction of cardiovascular risk factors from retinal .
photographs using automated

fundus photographs via deep learning :
deep learning

Edward Korot?, Nikolas Pontikos?, Xiaoxuan Liu%%3, Siegfried K. Wagner?, Livia Faes*,
Josef Huemer'*, Konstantinos Balaskas?, Alastair K. Denniston23¢, Anthony Khawaja'™ &
Pearse A. Keane™

Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Greg S. Corrado, Lily

Peng & & Dale R. Webster

Nature Biomedical Engineering 2, 158-164 (2018) | Cite this article

22k Accesses | 653 Citations | 2388 Altmetric | Metrics

Predicting risk of breast cancer at one to
five years from the mammogram.

. . . . ‘ ORIGINAL REPORTS I Breast Cancer
Retinal microvasculature dysfunction is ") o .
i Multi-Institutional Validation of a Mammography-Based

associated with Alzheimer’s disease and
mild cognitive impairment

Jacqueline Chua'*?, Qinglan Hu'?, Mengyuan Ke'?, Bingyao Tan'**, Jimmy Hong', Xinwen Yao

Saima Hilal>®’, Narayanaswamy Venketasubramanian®®, Gerhard Garhofer®, Carol Y. Cheung'®, Tien Yin Wong'?, = ' , o
Christopher Li-Hsian Chen® and Leopold Schmetterer'>3491112" Adam Yala ), MEng"? == Peter G. Mikhael ', BS'-?; Fredrik Strand ‘), MD, PhD3#; Gigin Lin

Breast Cancer Risk Model

") Check for updates
134

, MD, PhD%; Siddharth Satuluru, BS® Thomas Kim, MS’; ...
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Superhuman + risk of bias + not transparent —> need

for

Al recognition of patient race in medical imaging:
a modelling study

Judy Wawira Gichoya, Imon Banerjee, Ananth Reddy Bhimireddy, John L Burns, Leo Anthony Celi, Li-Ching Chen, Ramon Correa, Natalie Dulleru
Marzyeh Ghassemi, Shih-Cheng Huang, Po-Chih Kuo, Matthew P Lungren, Lyle | Palmer, Brandon ] Price, Saptarshi Purkayastha, Ayis T Pyrros,

continued vigilance?

Not Color Blind:
Al Predicts Racial Identity from Black and White Retinal Vessel Segmentations

Aaron S Coyner PhD'#, Praveer Singh PhD**?, James M Brown, PhD*,
Susan Ostmo MS', RV Paul Chan MD°, Michael F Chiang MD, MA®,
Jayashree Kalpathy-Cramer PhD*** J Peter Campbell MD, MPH'®

Lauren Oakden-Rayner, Chima Okechukwu, Laleh Seyyed-Kalantari, Hari Trivedi, Ryan Wang, Zachary Zaiman, Haoran Zhang

ROC-AUC
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Race Classification ROC-AUC as Pixel Resolution Increases

T T Surprisingly:

Grayscale Retinal Vessel Maps Contain Information Associated with Self-Reported Race
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Grayscale RVM

Grayscale Retinal Vessel Maps Are
Associated with Self-Reported Race

AUC-PR

(image level)

AUC-ROC

(image level)

AUC-PR

(subject level)

AUC-ROC

(subject level)

0.938

0.959

0.995

0.995

Implications for Artificial Intelligence Models

Aaron S. Coyner, PhD

OHSU
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