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Medical Imaging has the largest number of FDA Cleared Algorithms

FDA Cleared Algorithms (N=950)
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Al algorithms in Radiology

* Large number of FDA approved methods due to
- demonstrated ability of Al to analyze medical images
- established digital workflows and universal DICOM standards for image
storage

* Large amounts of imaging data are needed to properly develop, train and
evaluate Al algorithms - hundreds of thousands or millions (Willemink et al
Radiology 2020)

* There is a lack of accessible, curated and representative training data

* The majority of medical image data are stored in isolated PACS systems,
which work well for the local clinical needs

* Clinical data are rarely shared externally due to a lack of motivation, a lack of
resources, and privacy concerns

* Most research groups and industry have access limited to sets with small
sample sizes from fixed geographic areas




What went wrong with Al/ML methods using imaging?
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Hundreds of Al tools have
been built to catch covid.
None of them helped.

Some have been used in hospitals, despite not being properly
tested. But the pandemic could help make medical Al better.

nature machine intelligence

Explore content v About the journal v  Publish with us v

nature > nature machine intelligence > analyses > article

Analysis | Open Access | Published: 15 March 2021

Common pitfalls and recommendations for using
machine learning to detect and prognosticate for
COVID-19 using chest radiographs and CT scans

Michael Roberts &, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung,

Angelica |. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall,
Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala & Carola-
Bibiane Schonlieb

Nature Machine Intelligence 3,199-217 (2021) | Cite this article

1) Poor quality of data, “Frankenstein data sets”
* Mislabeled data
* Multiple unknown sources
* Duplicate data (training and testing)
* No traceability, limited quality control
e Lack of external validation

2) Lack of communication between Al/ML experts and
Medical/ Biomedical experts
e Lack of valid ground truth
* Incomplete understanding of independent
testing (i.e. no sequestered data)

3) Representativeness
e Data collected for a specific clinical task
e Specific populations, don’t reflect real-world
variations



What are the large data sets?
Database | Access | Modalities | # of Insttutions | # of exams (pending) _

MIDRC Free Multiple Multiple 189,997 (377,400)
Stanford AIMI Free Multiple Single 285,182

TCIA Free Multiple Multiple 92,771
ChestX-ray8 Free Radiography Single 30,805

National Lung Free CT Multiple 26,254
Screening Trial

Proscia Paid Multiple Multiple 1,000,000+
Gradient Health Paid Multiple Multiple 1,000,000+
RadlmageNET Paid Multiple Multiple 1,000,000+
ARPA-H INDEX Paid Multiple Multiple In development

In 2023, there were over 607,000,000 medical imaging procedures performed
at over 12,000 imaging centers in the United States



MEDICAL IMAGING AND DATA RESOURCE CENTER.

Medical Imaging Data Resource Center (MIDRC)

e Established August 2020
* NIBIB Contract 75N92020D00021, ARPA-H Contract 75N92023F00002

* Created as an open, curated, diverse image data commons

* A partnership between the AAPM, ACR and RSNA, supported by NIBIB,
hosted at University of Chicago, and on the Gen3 data platform

* Continued funding through ARPA-H and NAIRR
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MIDRC Data Flow
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IDRC Data Explorer
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i MIDRC

MEDICAL IMAGING AND DATA RESOURCE CENTER.

MIDRC Sequestered Data Commons
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https://doi.org/10.1117/1.JMI.10.6.064501

Sequestered Commons for Real-World Evaluations and
Translation through Regulatory to Clinical Care

MEDICAL IMAGING AND DATA RESOURCE CENTER.
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MIDRC BDF Imaging Hub (BIH) : Indexing Tool

MIDRC

BDF IMAGING HUB

Powered by GEN3

Q.

Exploration

Imaging Studies Subject Imaging Series

Name & Imaging Series 3
[Jcr 137,381
[Jer 406,384
[]ox 104,049
[ ] Fusion 18
[ ko 40
[Im3D 2,328
© 20 more
Body Part Examined (O]
Name & Imaging Series 3
[]aBD 2
[ ]aBD _PEL 9
[ ]ABD PEL 60
[ ]aBD PELV 4
[ ] Abdomen 2
[] ABDOMEN 17,923
© 260 more
Gender G Y
Name & Imaging Series 5
[]Female 433,269
[ ] male 412,876
|:| no data 17,545
[ ] Not Reported 657,645
|:| Unknown 279

Filters

No filters currently applied.

& Download Table

Platform

ACRdart

Stanford AIMI

MIDRC
Modality & :
CT
XR

Body Part Examined &

CHEST

TCIA

Gender

Male

Female

A
v

1,521,614 Imaging Series

Primary Site Disease Type
No Data No Data
Pelvis, Prostate, Lung
Anus Squamous Cell
Choct Abd Carcinoma Lung Cancer
est- om i
en-Pelvis, Pan%ﬁzgﬁ
Leg, TSpine Adenocarcin
Abdomen, oma
Pelvis
Brain Phantom Chest
Bile Duct

Head

~— COVID-19
Lung Phantom

Cardiovascul
ar Disease
(CVD)

Primary Site ¢ - Disease Type & : Platform ¢ : Collection & Study Description :

Lung COVID-19 (non-cancer) TCIA COVID-19-NY-SBU CT ABD AND PELVIS WITH IV CONT

Chest cardiovascular disease (CVD)  Stanford AIMI CheXpert Plus XR CHEST Lateral

BIH is a federated hub that currently indexes 590,885 imaging studies



Centralized versus federated data sharing
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Willemink et al Radiology 2020



Summary points

* “Numbers Are King, Quality Is Queen” - Bob Gilles
* Centralized repositories are valuable, but we need more data

e Options include centralized, indexed, federated, and hybrid
combinations

e Curation is an essential aspect, which requires resources

 Sustainability of any approach is an essential component
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