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A New Al Tool Predicts Gene Expression in a Single Cell

Medical Vision Generalist: Unifying Medical Imaging ﬁﬁ Il NJ
Tasks in Context

Sucheng Ren' Xiaoke Huang” Xianhang Li®> Junfei Xiao' Jieru Mei' Zeyu Wang?
Alan Yuille! Yuyin Zhou?

Segment Anythi ng Model 'Johns Hopkins University 2UC Santa Cruz

an artificial intelligence tool, scGPT, can identify cell types, predict the effects of
disrupting genes, and pinpoint which genas interact with each other.
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Training and validation loss and accuracy of BERT and our new BERT - Amazon Factory report dat
(Nat. Biotech. Under review, 2025)
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Data are presented in
diverse formats

R. Yan, T. Islam, L. Xing, Science
Advances 10, 2024.
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IMAGE REPRESENTATION OF OMICS DAT#A

Single-cell RNA-Seq (scRNA-Seq)
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Expression vector of a Keratinocyte cell and it’s ge

Vector
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Applications of omics-to-image conversion
In single-cell biology
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Fig. 4 | Visualization of ischaemic sensitivity dataset (left-lung, middle-eso- data classes are added in Supplementary Fig. S22. ¢ Classification accuracy of dif-
phagus, right-spleen). a UMAP visualizations of raw data. b UMAP visualizations of ~ ferent techniques including genomap+genoNet. Here, Cell-ID(c) and Cell1D(g)
the genomap features at the fully connected layer of the genoNet. Major

denote Cell-ID technique with cell-to-cell and cell-to-group matching formulation.
improvements in cluster separation are indicated by arrows. Color legends of the  Source data are provided as a Source Data file.




Unveiling Tissue Heterogeneity through Genomic Interaction-Encoded Image

Representation of RNA Sequencing Data
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BASED DEEP RADIOMICS
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Radiation Lung fibrosis

Control

Week 2

Visualization of bulk RNA sequencing of mouse lungs post radiation treatment. We convert 17 mouse
lungs bulk RNA sequencing samples into genoMaps. Mouse lungs are treated with 0 Gy (control), 65 Gy or
75 Gy. RNA sequencing are performed either two or six weeks after the radiation.




Tabular data
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Spatial transcriptomics
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&I FOUNDATION MODELS

Definition:
Foundation models are large-scale machine learning models trainec
of data. They are designed to be adaptable to a wide range of tasks

Characteristics:

Large scale: large number of parameters & datasets
Generalization:jcapable o performing various
task-specific training

Adaptability: can be fine-tuned for specific applications
Self-supervised




Training and validation loss and accuracy of BERT and our new BERT - Amazon Factory report dat
(Nat. Biotech. Under review, 2025)
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. Fine-tuning

. prompting

. In-context learning

In-context Vectors: Making In Context Learning More Effective
and Controllable Through Latent Space Steering

Sheng Liuf, Lei Xingf, James Zou®
T Stanford University

{shengl, lei, jamesz}@stanford.edu

Warning: This paper includes examples and model-generated content that may be deemed offensive.

Abstract

Large language models (LLMs) demonstrate emergent in-context learning capabilities, where
they adapt to new tasks based on example demonstrations. However, in-context learning has
seen limited effectiveness in many settings, is difficult to quantitatively control and takes up
context window space. To overcome these limitations, we propose an alternative approach
that recasts in-context learning as in-context vectors (ICV). Using ICV has two steps. We first
use a forward pass on demonstration examples to create the in-context vector from the latent
embedding of the LLM. This vector captures essential information about the intended task. On a
new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM
using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively

follow the demonstration examples: 2) it's easv to control bv adiustine the maenitude of the

v2 [cs.LG] 16 Nov 2023
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Automated radiotherapy treatment planning guided by
GPT-4Vision

Sheng Liu®?* Oscar Pastor-Serrano'*, Yizheng Chen', Matthew Gopaulchan®,
Weixing Liang?, Mark Buyyounouski!, Erqi Pollom!, Quynh-Thu Le!,
Michael Gensheimer!, Peng Dong', Yong Yang!, James Zou??! and Lei Xing!
'Department of Radiation Oncology, Stanford University, Stanford, CA, USA
2Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
3Department of Computer Science, Stanford University, Stanford, CA, USA

Abstract

Radiotherapy treatment planning is a time-consuming and potentially subjective process that requires
the iterative adjustment of model parameters to balance multiple conflicting objectives. Recent
advancements in frontier AT models offer promising avenues for addressing the challenges in planning
and clinical decision-making. This study introduces GPT-RadPlan, an automated treatment planning
framework that integrates radiation oncology knowledge with the reasoning capabilities of large multi-
modal models, such as GPT-4Vision (GPT-4V) from OpenAl. Via in-context learning, we incorporate
clinical protocols for various disease sites to enable GPT-4V to acquire treatment planning domain
knowledge. The resulting GPT-RadPlan agent is integrated into our in-house inverse treatment
planning system through an API. For a given patient, GPT-RadPlan acts as both plan evaluator and
planner, first assessing dose distributions and dose-volume histograms (DVHs), and then providing
“textual feedback” on how to improve the plan. In this manner, the agent iteratively refines the
plan by adjusting planning parameters, such as weights and objective doses, based on its suggestions.
The efficacy of the automated planning system is showcased across multiple prostate and head &
neck cancer cases, where we compared GPT-RadPlan results to clinical plans produced by human
experts. In all cases, GPT-RadPlan either outperformed or matched the clinical plans, demonstrating
superior target coverage and organ-at-risk sparing. Consistently satisfying the dosimetric objectives
in the clinical protocol, GPT-RadPlan represents the first multimodal large language model agent
that mimics the behaviors of human planners in radiation oncology clinics, achieving promising results
in automating the treatment planning process without the need for additional training.

Stanford Medical Physics

Al Foundation Model (FM) is coming to medical physics! We are pleased that

the work to use FM for automated RT planning is selected as one of “the Best
in Physics" at the upcoming AAPM annual meeting. Congratulations to Oscar,
Sheng, and all co-authors!
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Deep and Wide Learning: Sample Interrelationship-

Al & FOUNDATION MODELS FOR FUTURE Informed Representation Learning for Enhanced
| ' ' ~A D " Data-Driven Decision-Making
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FM/AI IN CLINICAL WORKFLOW OF RADIATION
THERAPY
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Summary

Data pre-processing for deep learning

Next-generation Al Deep omics data analysis

Improving safety,
quality, efficiency, and
cost-effectiveness
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