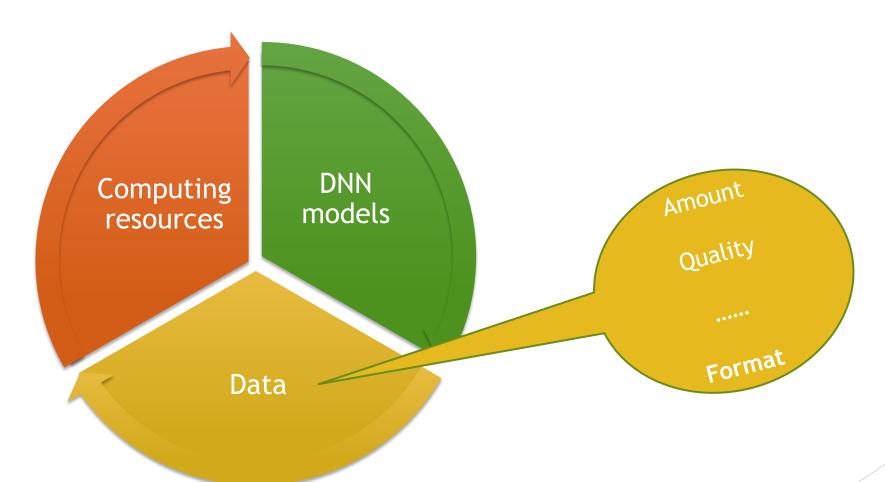
MULTI-OMICS INTEGRATION & PATTERN DISCOVERY IN PATIENT DATA USING SPATIALLY SEMANTIC TOPOGRAPHIC MAPS

Lei Xing, PhD, DABR

Jacob Haimson & Sarah S. Donaldson Professor & Director of Medical Physics Division

Departments of Radiation Oncology
Department of Electrical Engineering (by courtesy) & Molecular Imaging Program (MIPS)
Stanford University, Stanford, California

AI FOR PRECISION MEDICINE



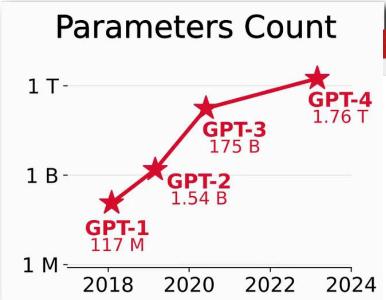
FOUNDATION MODELS

nature medicine

Article

https://doi.org/10.1038/s41591-024-02856-4

A visual-language foundation model for computational pathology



Segment Anything Model

Training Data Size

High Energy Physics - Phenomenology

[Submitted on 8 Mar 2024]

OmniJet- α : The first cross-task foundation model for particle physics

Joschka Birk, Anna Hallin, Gregor Kasieczka

Foundation models are multi-dataset and multi-task machine learning methods that once pre-trained can be fine-tuned for a large variety of downstream applications. The successful development of such general-purpose models for physics data would be a major breakthrough as they could improve the achievable physics performance while at the same time drastically reduce the required amount of training time and data. We report significant progress on this challenge on several fronts. First, a comprehensive set of evaluation methods is introduced to judge the quality of an encoding from physics data into a representation suitable for the autoregressive generation of particle jets with transformer architectures (the common backbone of foundation models). These measures motivate the choice of a higher-fidelity tokenization compared to previous works. Finally, we demonstrate transfer learning between an unsupervised problem (jet generation) and a classic supervised task (jet tagging) with our new OmniJet- α model. This is the first successful transfer between two different and actively studied classes of tasks and constitutes a major step in the building of foundation models for particle physics.

Subjects: High Energy Physics - Phenomenology (hep-ph); Machine Learning (cs.LG); High Energy Physics - Experiment (hep-ex); Data Analysis, Statistics and Probability (physics.data-an)

²UC Santa Cruz

as: arXiv:2403.05618 [hep-ph]

(or arXiv:2403.05618v1 [hep-ph] for this version) https://doi.org/10.48550/arXiv.2403.05618

Séairh. 1.2.3.4.5.11, Bowen Chen^{1,2,11}, Drew F. K. Williamson 1.2.3.11,

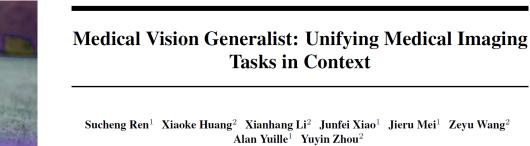
Help then 1.2.3.4.6, Ivy Liang^{1,7}, Tong Ding^{1,7}, Guillaume Jaume^{1,2,3,4},

ov¹, Long Phi Le², Georg Gerber 1, Anil V. Parwani⁸,

ang 1.2.3.4.9 & Faisal Mahmood 1.2.3.4.10

■

rated adoption of digital pathology and advances in deep learning ed the development of robust models for various pathology s a diverse array of diseases and patient cohorts. However, ing is often difficult due to label scarcity in the medical domain, el's usage is limited by the specific task and disease for which a Additionally, most models in histopathology leverage only a stark contrast to how humans teach each other and reason pathologic entities. We introduce CONtrastive learning from or Histopathology (CONCH), a visual-language foundation model



¹Johns Hopkins University

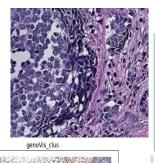
A New AI Tool Predicts Gene Expression in a Single Cell

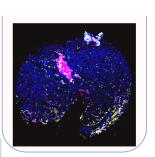
An artificial intelligence tool, scGPT, can identify cell types, predict the effects of disrupting genes, and pinpoint which genes interact with each other.

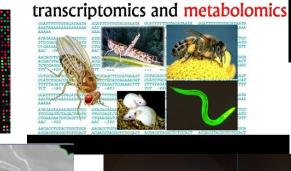
Abstract

WHY IS HEALTHCARE AI CHALLENGING?

- Various data formats
- Noise, small sample size, missing data, bias, ...







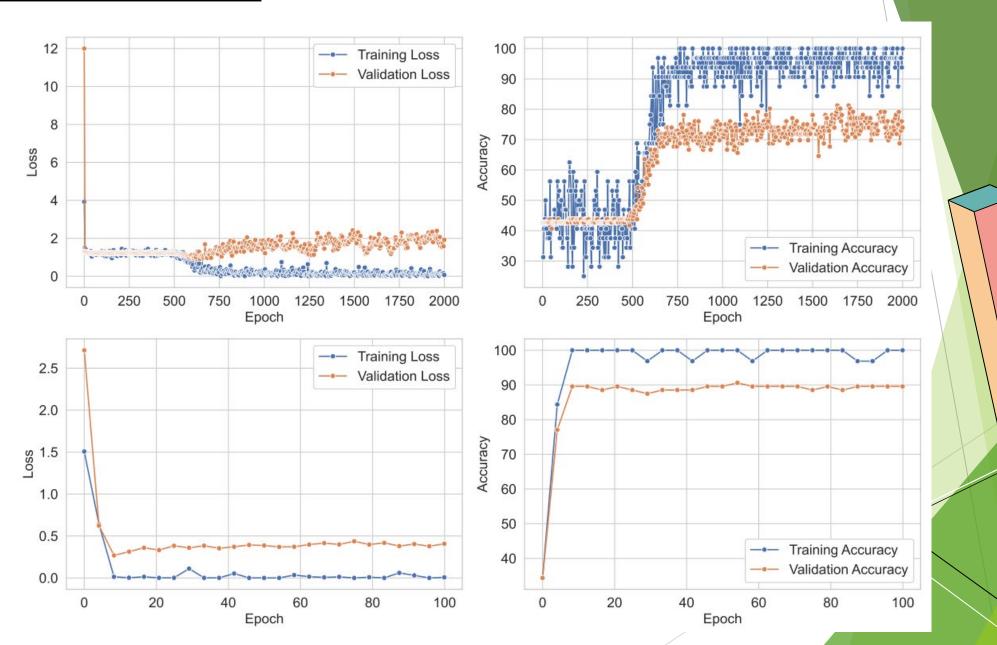
Genomics, proteomics,

- Archimedes

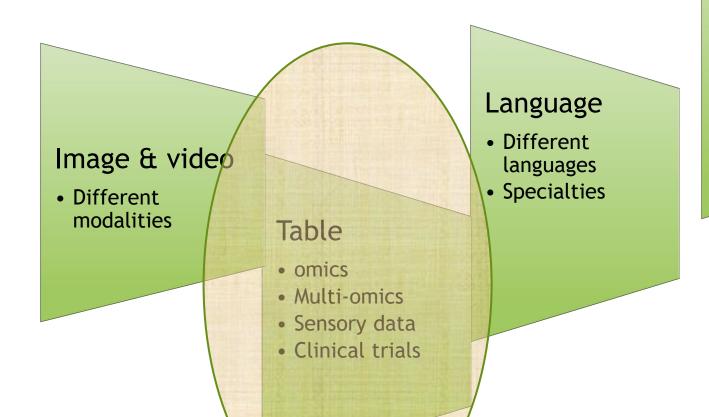
Give me a firm place to stand and a lever and I can move the Earth - Archimedes

Give me sufficient **CLEAN** data, I can solve all inference problems

<u>Training and validation loss and accuracy of BERT and our new BERT - Amazon Factory report dataset</u> (Nat. Biotech. Under review, 2025)



Data are presented in diverse formats



Graph

- Bio-network
- Social network
- Pathology data
- Functional maps
- Spatial transcriptomics

R. Yan, T. Islam, L. Xing, Science Advances 10, 2024.

nature biomedical engineering

Article

https://doi.org/10.1038/s41551-024-01268-6

Interpretable discovery of patterns in tabular data via spatially semantic topographic maps

Received: 15 March 2023

Accepted: 23 September 2024

Published online: 15 October 2024

Check for updates

Rui Yan^{1,4}, Md Tauhidual Islam © ^{2,4} & Lei Xing © ^{1,2,3}

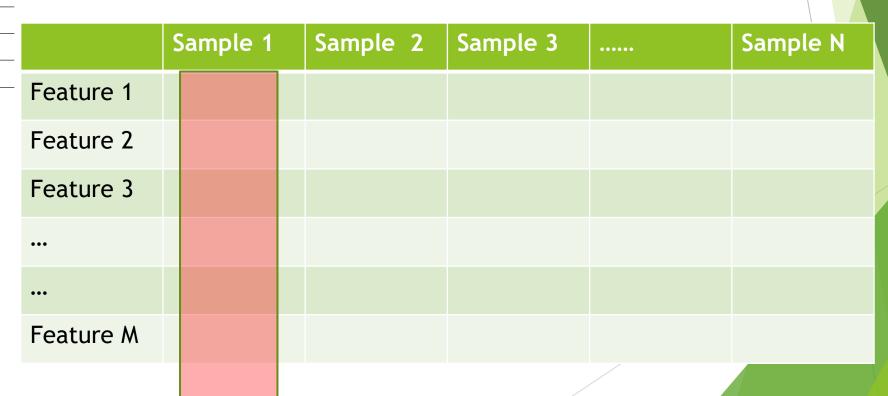
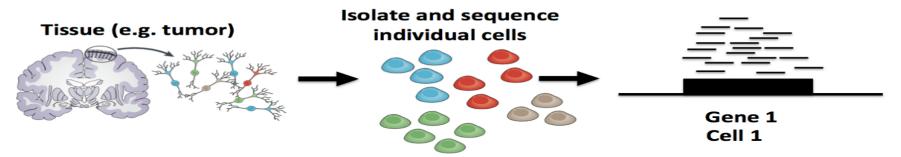
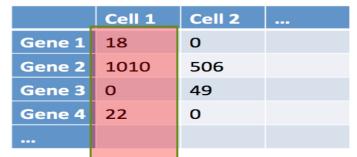


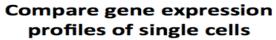
IMAGE REPRESENTATION OF OMICS DATA

Single-cell RNA-Seq (scRNA-Seq)

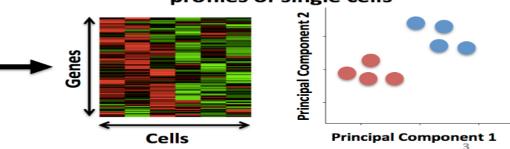


Read Counts





1000



Stephanie Hicks

Welcome to the World of Single-Cell RNA-Sequencing

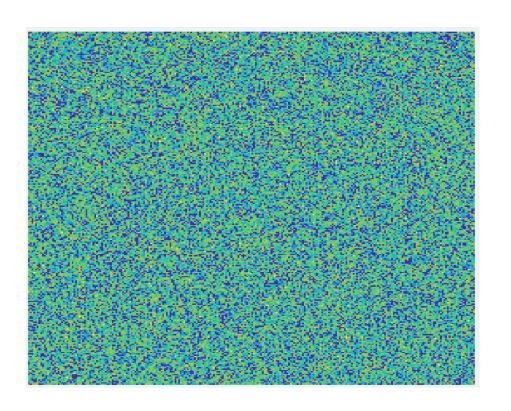
https://speake<mark>rdeck.com/s</mark>tephaniehicks/welcome-to-the-world-of-single-cell-rna-sequencing?slide=3

Read Counts

	Cell 1	Cell 2	
Gene 1	18	0	
Gene 2	1010	506	
Gene 3	0	49	
Gene 4	22	0	

Gene i	•	•	•	Gene k
•	•	•	•	•
•	•	0	•	•
•	•	•	•	•
Gene j	•	•	•	e

Gene i	•	•	•	Gene k		
•	•	•	•	•		
•	•	•	•	•		
•	•	•	•	•		
Gene j	•	•	•	•		



Expression vector of a Keratinocyte cell and it's gen

nature communications

Article

https://doi.org/10.1038/s41467-023-36383-6

Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data

Received: 19 August 2022

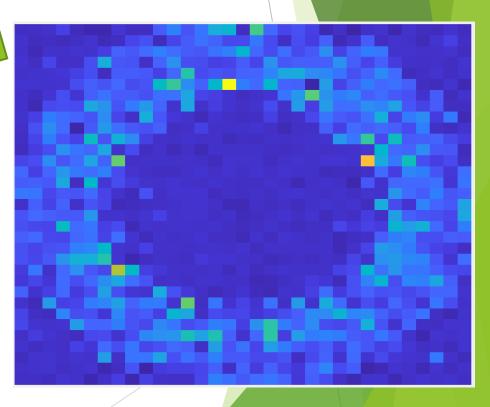
Accepted: 30 January 2023

Published online: 08 February 2023

Check for updates

Md Tauhidul Islam ®¹ & Lei Xing ®¹⊠

Remarkable advances in single cell genomics have presented unique challenges and opportunities for interrogating a wealth of biomedical inquiries. High dimensional genomic data are inherently complex because of intertwined relationships among the genes. Existing methods, including emerging deep learning-based approaches, do not consider the underlying biological characteristics during data processing, which greatly compromises the performance of data analysis and hinders the maximal utilization of state-of-theart genomic techniques. In this work, we develop an entropy-based cartography strategy to contrive the high dimensional gene expression data into a



Genomap

AI FOR OMICS DATA PROCESSING

nature communications

Article

https://doi.org/10.1038/s41467-023-36383-6

Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data

Received: 19 August 2022

Accepted: 30 January 2023

Published online: 08 February 2023

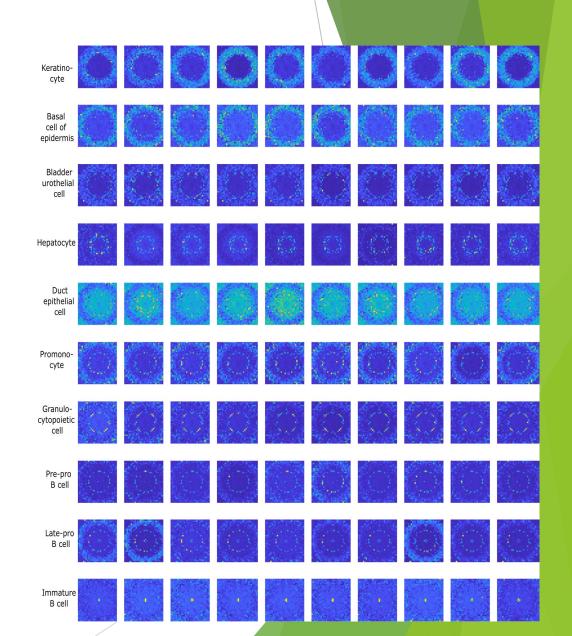
Check for updates

Md Tauhidul Islam ¹ & Lei Xing ¹ ⊠

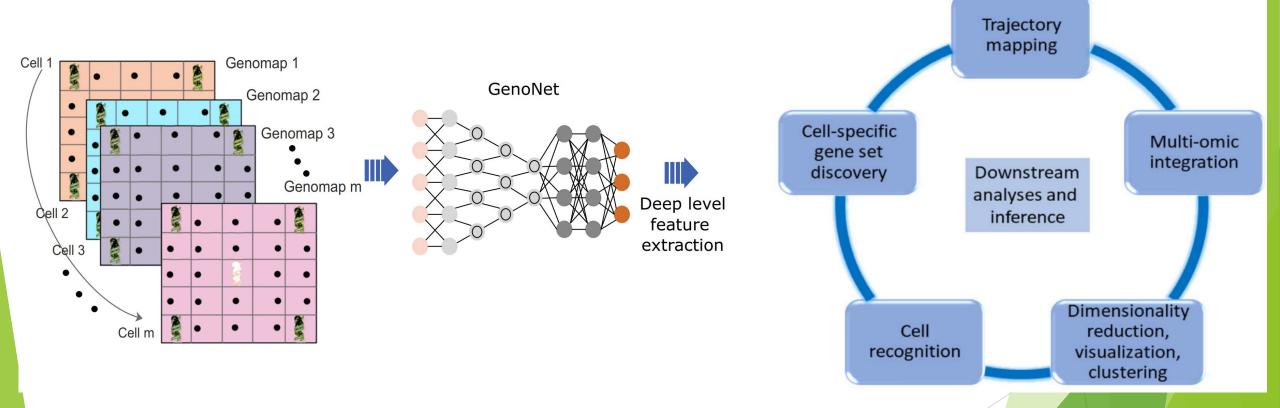
Remarkable advances in single cell genomics have presented unique challenges and opportunities for interrogating a wealth of biomedical inquiries. High dimensional genomic data are inherently complex because of intertwined relationships among the genes. Existing methods, including emerging deep learning-based approaches, do not consider the underlying biological characteristics during data processing, which greatly compromises the performance of data analysis and hinders the maximal utilization of state-of-theart genomic techniques. In this work, we develop an entropy-based cartography strategy to contrive the high dimensional gene expression data into a

https://www.nature.com/articles/s41467-023-36383-6

www.analyXus.com



Applications of omics-to-image conversion in single-cell biology



Islam, M.T. and Xing, L., 2023. Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data. Nature Communications, 14(1), p.679.

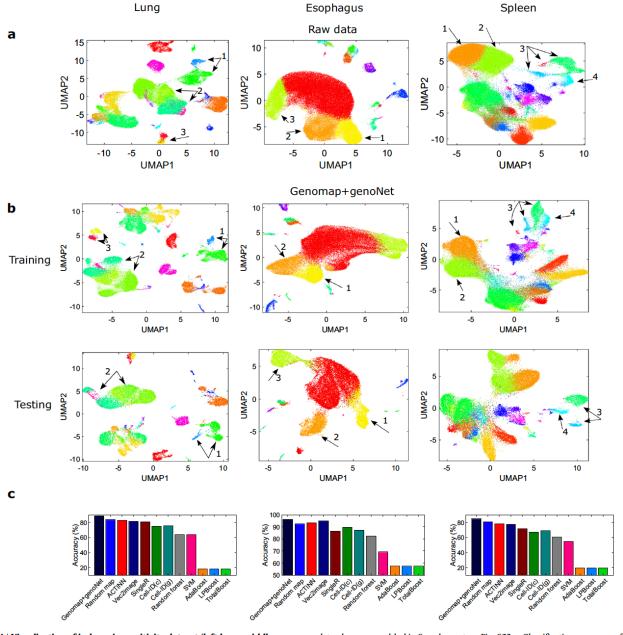
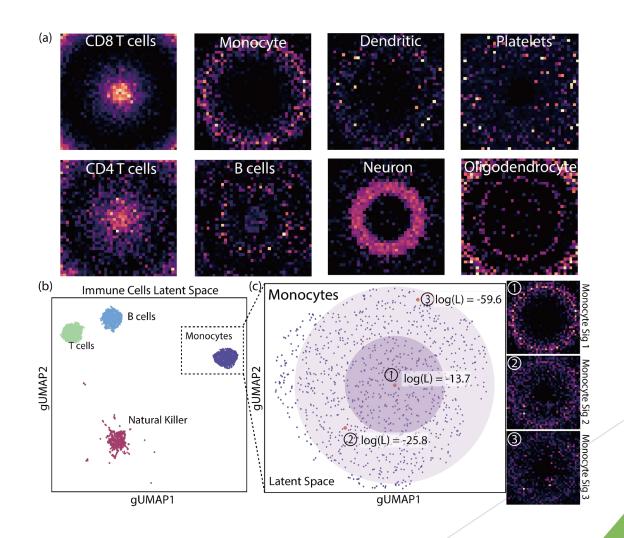


Fig. 4 | **Visualization of ischaemic sensitivity dataset (left-lung, middle-eso-phagus, right-spleen).** a UMAP visualizations of raw data. **b** UMAP visualizations of the genomap features at the fully connected layer of the genoNet. Major improvements in cluster separation are indicated by arrows. Color legends of the

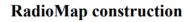
data classes are added in Supplementary Fig. S22. c Classification accuracy of different techniques including genomap+genoNet. Here, Cell-ID(c) and Cell-ID(g) denote Cell-ID technique with cell-to-cell and cell-to-group matching formulation. Source data are provided as a Source Data file.

Unveiling Tissue Heterogeneity through Genomic Interaction-Encoded Image Representation of RNA Sequencing Data



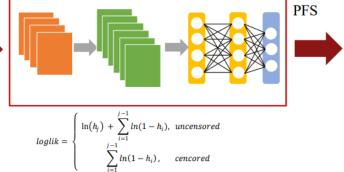
OMICSMAP-BASED DEEP RADIOMICS



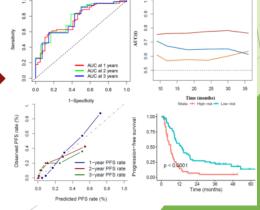


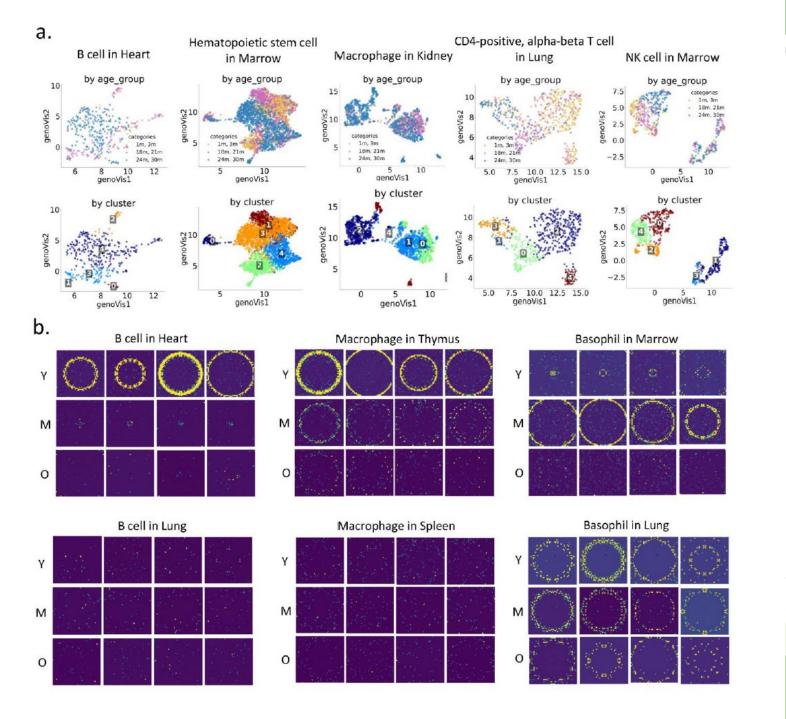
RadioMap 1 RadioMap 2 RadioMap 3 Patient 1 Patient 2 Patient 3 RadioMap n

Prognosis prediction

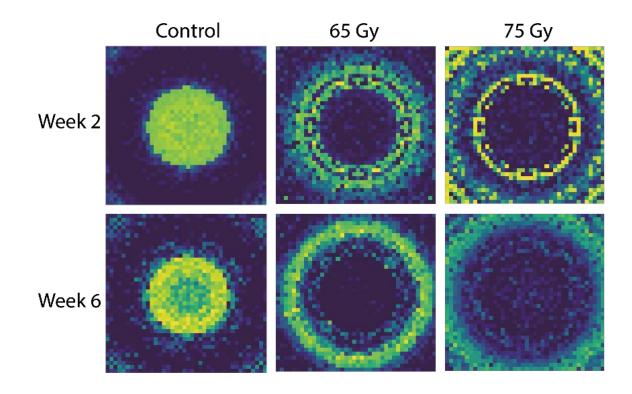


Evaluation



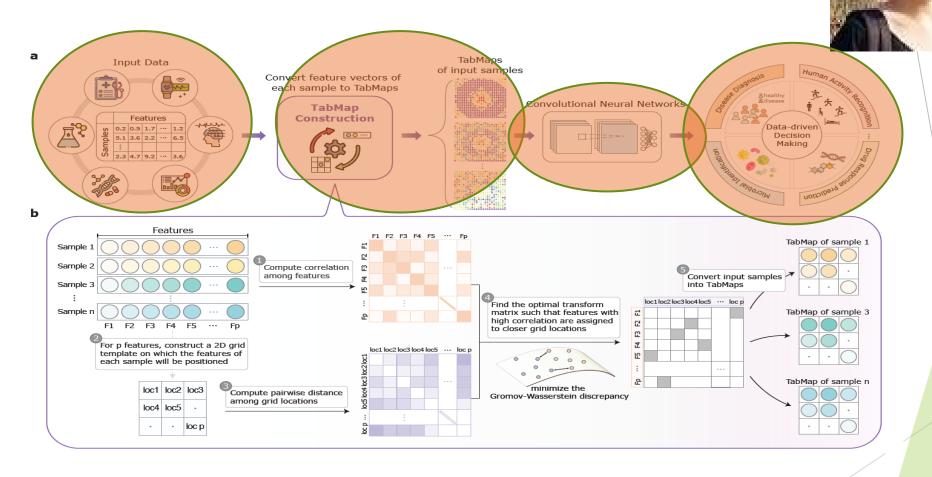


Radiation Lung fibrosis



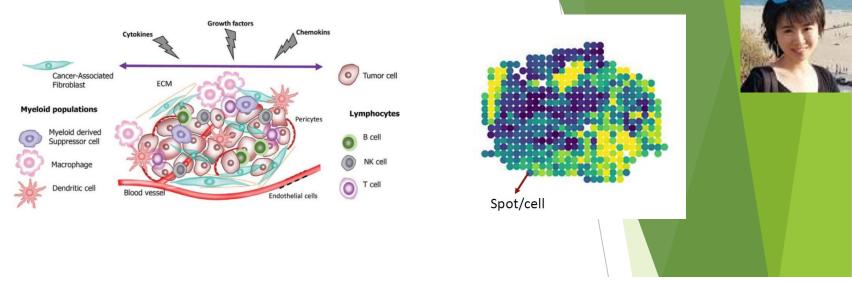
Visualization of bulk RNA sequencing of mouse lungs post radiation treatment. We convert 17 mouse lungs bulk RNA sequencing samples into genoMaps. Mouse lungs are treated with 0 Gy (control), 65 Gy or 75 Gy. RNA sequencing are performed either two or six weeks after the radiation.

Tabular data



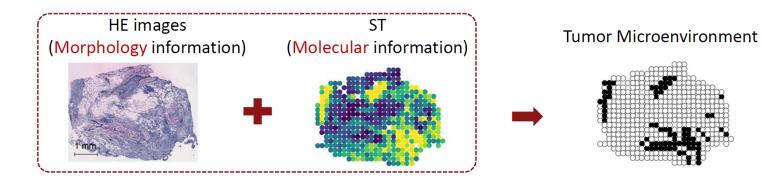
Yan R, Islam, M.T., and Xing, L., 2024. Interpretable discovery of patterns in tabular data via spatially semantic topographic maps, Nature Biomedical Engineering 8, 1-12, 2024.

Spatial transcriptomics



HE patch Transformer Blocks Feature Tokenization Multi-modal interaction HE2ST FHE2ST FHE2enh FST_enh Dec 1 Figure Multi-modal fusion Reconstruction

HE + ST integration



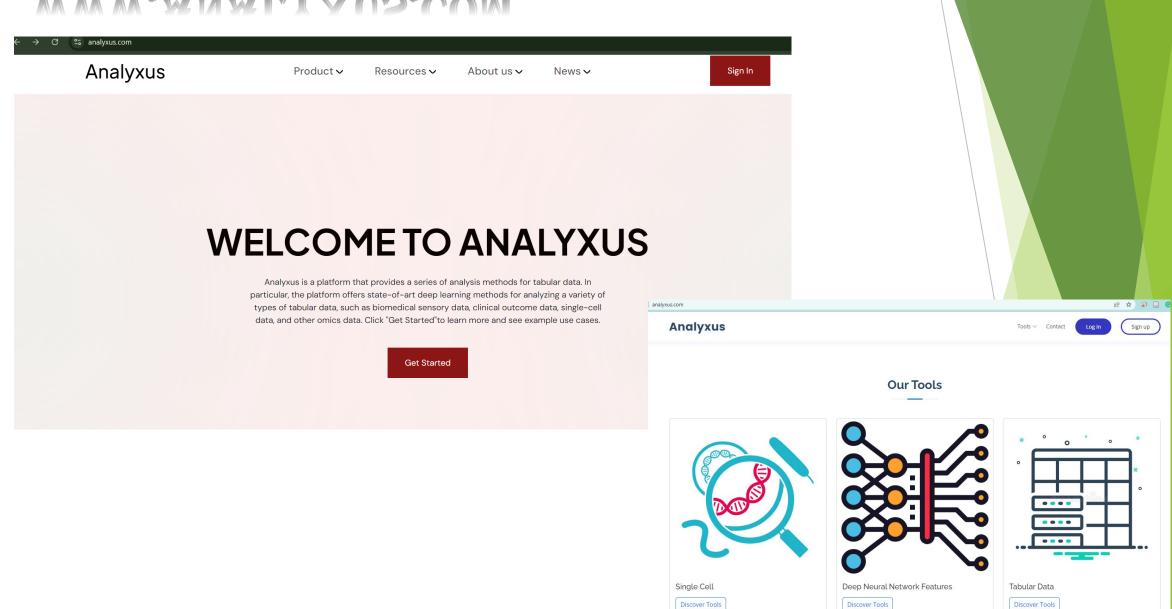
Spot-level Tasks (Biology):

- > Spatial domain detection.
- > ST super-resolution.
- > Cell type decomposition/deconvolution.
- **>**

Patient-level Tasks (Clinical):

- Cancer subtyping.
- Gene mutation prediction.
- > Response to immunotherapy.
- **>**

WWW.ANALYXUS.COM



AI FOUNDATION MODELS

•Definition:

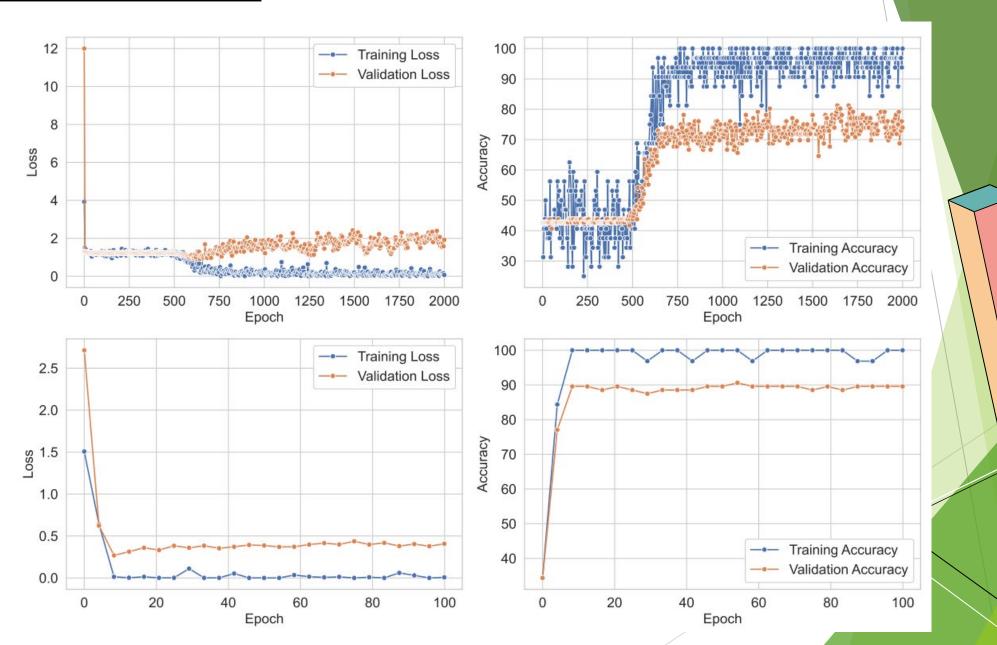
Foundation models are large-scale machine learning models trained on vast amounts of data. They are designed to be adaptable to a wide range of tasks.

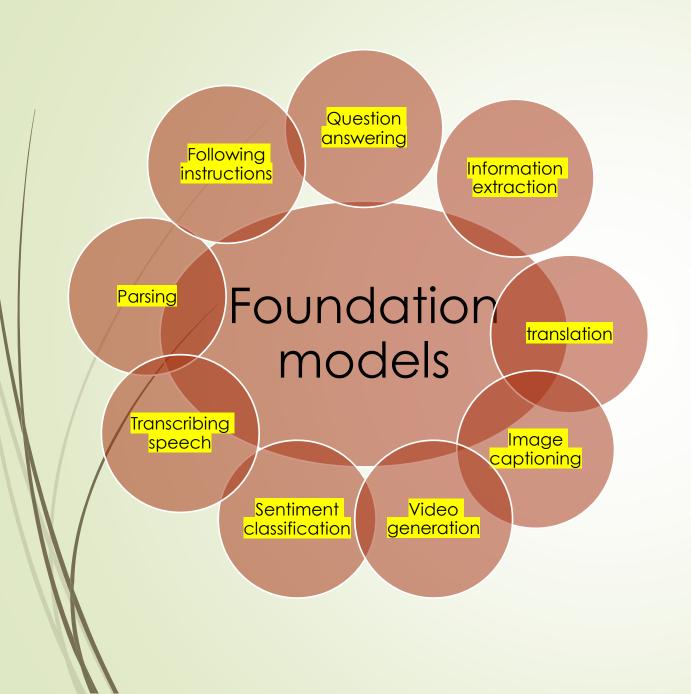
Characteristics:

- Large scale: large number of parameters & datasets
- **Generalization:** capable of performing various task-specific training
- Adaptability: can be fine-tuned for specific applications
- Self-supervised

LLMs

<u>Training and validation loss and accuracy of BERT and our new BERT - Amazon Factory report dataset</u> (Nat. Biotech. Under review, 2025)





- Fine-tuning
- prompting
- In-context learning

In-context Vectors: Making In Context Learning More Effective and Controllable Through Latent Space Steering

Sheng Liu[†], Lei Xing[†], James Zou[†]

† Stanford University
{shengl, lei, jamesz}@stanford.edu

Warning: This paper includes examples and model-generated content that may be deemed offensive.

Abstract

Large language models (LLMs) demonstrate emergent in-context learning capabilities, where they adapt to new tasks based on example demonstrations. However, in-context learning has seen limited effectiveness in many settings, is difficult to quantitatively control and takes up context window space. To overcome these limitations, we propose an alternative approach that recasts in-context learning as *in-context vectors* (ICV). Using ICV has two steps. We first use a forward pass on demonstration examples to create the in-context vector from the latent embedding of the LLM. This vector captures essential information about the intended task. On a new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively follow the demonstration examples: 2) it's easy to control by adjusting the magnitude of the

Automated radiotherapy treatment planning guided by GPT-4Vision

Sheng Liu^{1,2}*, Oscar Pastor-Serrano¹*, Yizheng Chen¹, Matthew Gopaulchan¹, Weixing Liang³, Mark Buyyounouski¹, Erqi Pollom¹, Quynh-Thu Le¹, Michael Gensheimer¹, Peng Dong¹, Yong Yang¹, James Zou^{2,3}†, and Lei Xing¹†

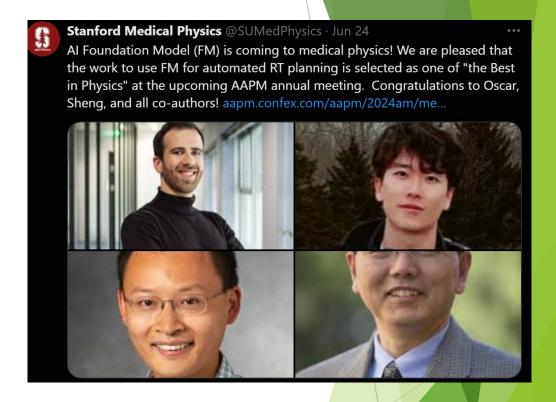
¹Department of Radiation Oncology, Stanford University, Stanford, CA, USA

²Department of Biomedical Data Science, Stanford University, Stanford, CA, USA

³Department of Computer Science, Stanford University, Stanford, CA, USA

Abstract

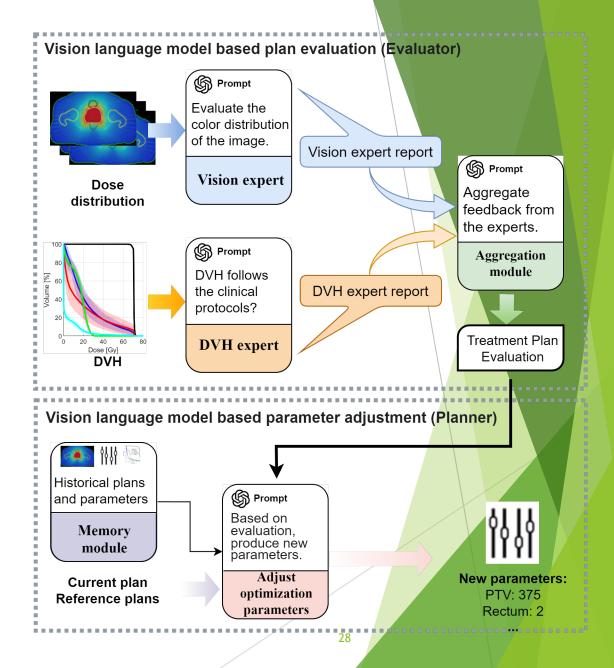
Radiotherapy treatment planning is a time-consuming and potentially subjective process that requires the iterative adjustment of model parameters to balance multiple conflicting objectives. Recent advancements in frontier AI models offer promising avenues for addressing the challenges in planning and clinical decision-making. This study introduces GPT-RadPlan, an automated treatment planning framework that integrates radiation oncology knowledge with the reasoning capabilities of large multimodal models, such as GPT-4Vision (GPT-4V) from OpenAI. Via in-context learning, we incorporate clinical protocols for various disease sites to enable GPT-4V to acquire treatment planning domain knowledge. The resulting GPT-RadPlan agent is integrated into our in-house inverse treatment planning system through an API. For a given patient, GPT-RadPlan acts as both plan evaluator and planner, first assessing dose distributions and dose-volume histograms (DVHs), and then providing "textual feedback" on how to improve the plan. In this manner, the agent iteratively refines the plan by adjusting planning parameters, such as weights and objective doses, based on its suggestions. The efficacy of the automated planning system is showcased across multiple prostate and head & neck cancer cases, where we compared GPT-RadPlan results to clinical plans produced by human experts. In all cases, GPT-RadPlan either outperformed or matched the clinical plans, demonstrating superior target coverage and organ-at-risk sparing. Consistently satisfying the dosimetric objectives in the clinical protocol, GPT-RadPlan represents the first multimodal large language model agent that mimics the behaviors of human planners in radiation oncology clinics, achieving promising results in automating the treatment planning process without the need for additional training.



Liu S, Pastor-Serrano O,, arXiv preprint arXiv:2406.15609, 2024

GPT-RadPlan

- Based on GPT4-Vision
- Evaluation module:
- DVH Expert compares metrics with protocol/intent
- Image expert evaluates dose distribution and presence of hot/cold spots
- Aggregation module improvement suggestions
- ▶ Planner module: suggest new parameters based on
- Stored information from previous iterations
- The current plan
- 3 reference approved plans from the same disease site

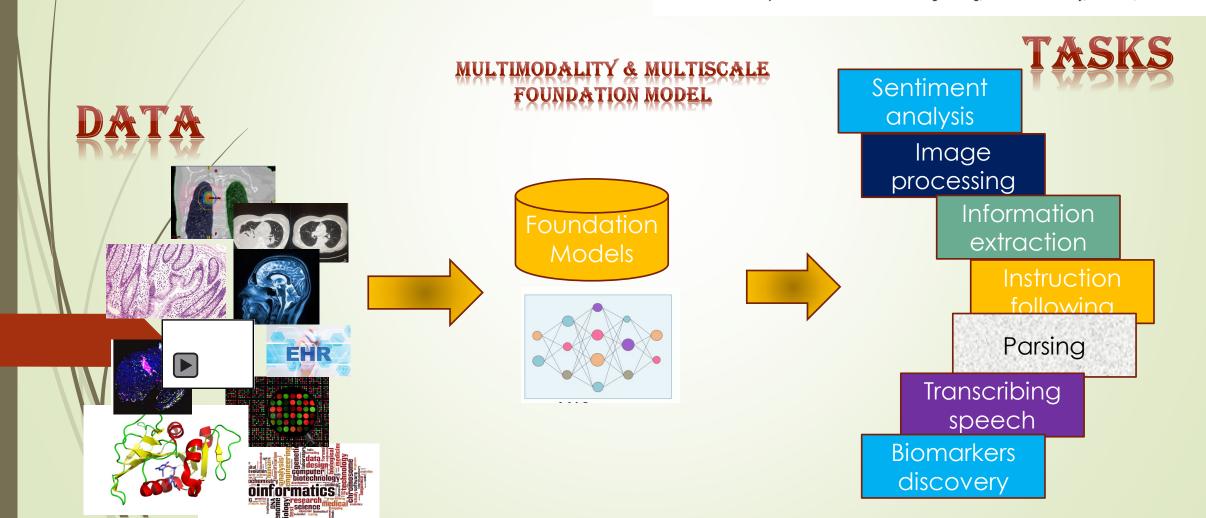


AI & FOUNDATION MODELS FOR FUTURE HEALTHCARE

Deep and Wide Learning: Sample Interrelationship-Informed Representation Learning for Enhanced Data-Driven Decision-Making

Md Tauhidul Islam¹ and Lei Xing^{1,2,3,*}

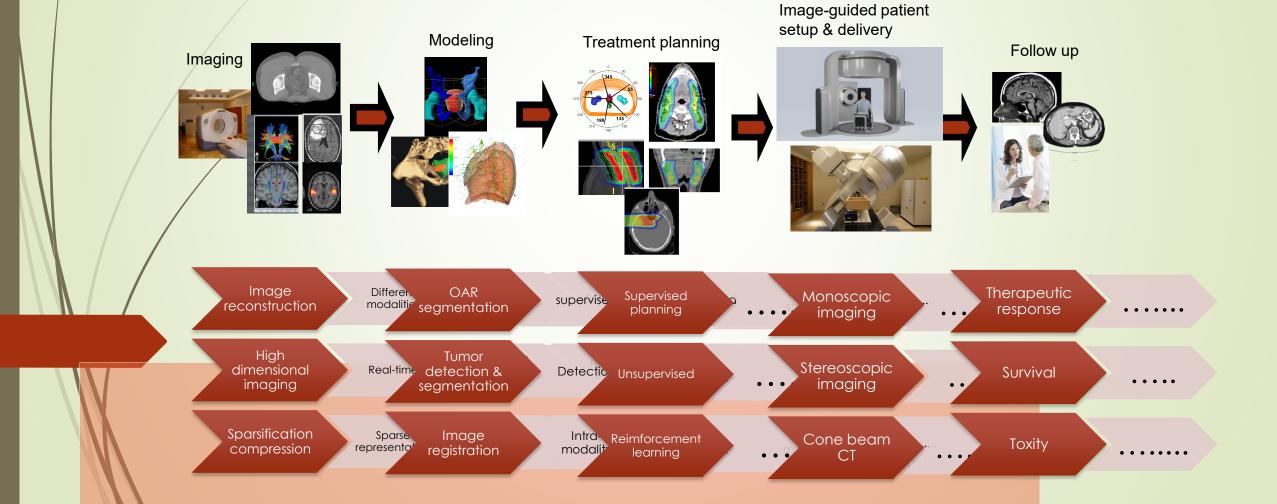
³Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California-94305, USA



¹Department of Radiation Oncology, Stanford University, Stanford, California-94305, USA

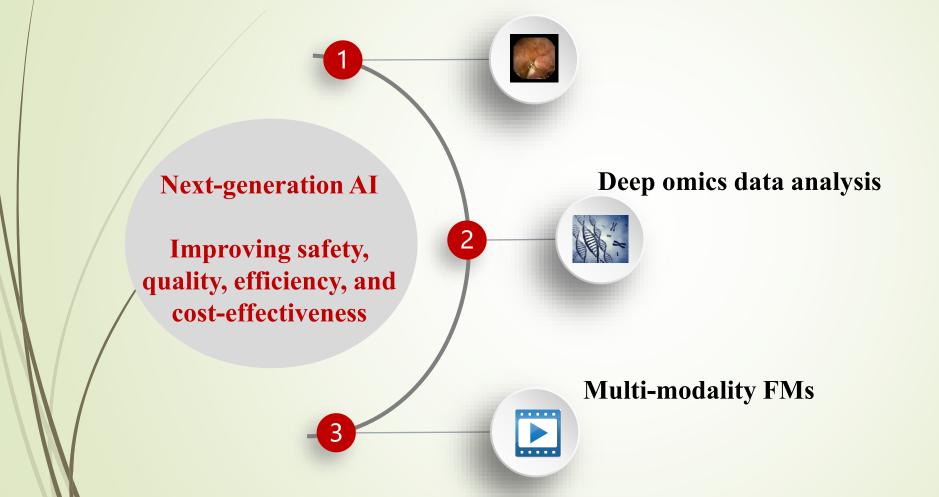
²Department of Electrical Engineering, Stanford University, Stanford, California-94305, USA

FM/AI IN CLINICAL WORKFLOW OF RADIATION THERAPY

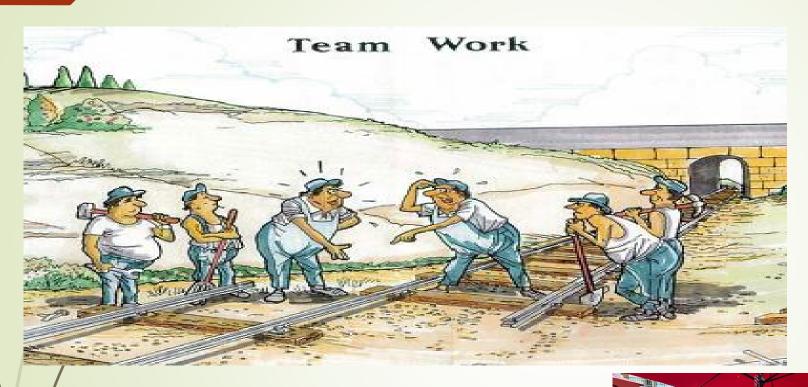


Summary

Data pre-processing for deep learning



Acknowledgements



NIH: 1R01CA223667, 1R01CA227713, and 1R01CA256890

- ♦ Google Inc.
 - **Mevion Medical Systems**

