ROGER REVELLE COMMEMORATIVE LECTURE - MARCH 17TH, 2009

FUTURE OCEAN

DR. PAUL FALKOWSKI, SPEAKER

PRESENTED BY THE OCEAN STUDIES BOARD

PAUL G. FALKOWSKI is Board of Governors' Professor in the Institute of Marine and Coastal Sciences and the Department of Earth and Planetary Science at Rutgers University. His scientific interests include evolution, paleoecology, photosynthesis, biophysics, biogeochemical cycles, and symbiosis. His current research efforts are directed towards understanding the co-evolution of biological and physical systems.

Dr. Falkowski earned his B.S. and M.Sc. degrees from

the City College of the City University of New York and his Ph.D. from the University of British Columbia. After a post-doctoral fellowship at the University of Rhode Island, he joined Brookhaven National Laboratory in 1976 as a scientist in the newly formed Oceanographic Sciences Division. He served as head of the division from 1986 to 1991 and deputy chair in the Department of Applied Science from 1991 to 1995, responsible for the development and oversight of all environmental science programs. In 1996, he was appointed as the Cecil and Ida Green Distinguished Professor at the University of British Columbia. He moved to Rutgers University in 1998. He received a John Simon Guggenheim Fellowship in 1992; the Huntsman Medal in 1998; the Hutchinson Prize in 2000; and the Vernadsky medal from

the European Geosciences Union in 2007. In 2001, he was elected a Fellow of the American Geophysical Union; in 2002, he was elected to the American Academy of Arts and Sciences; in 2007, he was elected to the National Academy of Sciences; and in 2008, he was elected as a Fellow of the American Academy of Microbiology.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs

aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to

the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council.

WWW.NATIONAL-ACADEMIES.ORG

DEAR LECTURE PARTICIPANT: On behalf of the Ocean Studies Board of the National Academies, we would like to welcome you to the Tenth Annual Roger Revelle Commemorative Lecture. This lecture was created by the Ocean Studies Board in honor of Dr. Roger Revelle to highlight the important links between the ocean sciences and public policy. March 7, 2009 marked the 100th anniversary of Roger Revelle's birth, recently commemorated by a week of special events at his home institution, the Scripps Institution of Oceanography.

ROGER REVELLE For almost half a century, Roger Revelle was a leader in the field of oceanography. Revelle trained as a geologist at Pomona College and the University of California, Berkeley. In 1936, he received his Ph.D. in oceanography from the Scripps Institution of Oceanography. As a young naval officer, he helped persuade the

Navy to create the Office of Naval Research (ONR) to support basic research in oceanography and was the first head of ONR's geophysics branch. Revelle served for 12 years as the Director of Scripps (1950-1961, 1963-1964), where he built up a fleet of research ships and initiated a decade of expeditions to the deep Pacific that challenged existing geological theory.

Revelle's early work on the carbon cycle suggested that the sea could not absorb all the carbon dioxide released from burning fossil fuels. He organized the first continual measurement of atmospheric carbon dioxide, an effort led by Charles Keeling, resulting in a longterm record that has been essential to current research on global climate change. With Hans Suess, he published the seminal paper demonstrating the connection between increasing atmospheric carbon dioxide and burning of fossil fuels. Revelle kept the issue of increasing carbon dioxide levels before the public and spearheaded efforts to investigate the mechanisms and consequences of climate change.

Revelle left Scripps for critical posts as Science Advisor to the Department of the Interior (1961-1963) and as the first Director of the Center for Population Studies at Harvard (1964-1976). Revelle applied his knowledge of geophysics, ocean resources, and population dynamics to the world's most vexing problems: poverty, malnutrition, security, and education.

In 1957, Revelle became a member of the National Academy of Sciences to which he devoted many hours of volunteer service. He served as a member of the Ocean Studies Board, the Board on Atmospheric Sciences and Climate, and many committees. He also chaired a number of influential Academy studies on subjects ranging from the environmental effects of radiation to understanding sea-level change.

OCEAN STUDIES BOARD MEMBERS SHIRLEY A. POMPONI, Chair until March 18, 2008, Harbor Branch Oceanographic Institution, Fort Pierce, Florida / MARCIA K. MCNUTT, Chair, Monterey Bay Aquarium Research Institute, California / DONALD F. BOESCH, University of Maryland Center for Environmental Science, Cambridge / JORGE E. CORREDOR, University of Puerto Rico, Lajas / KEITH R. CRIDDLE, University of Alaska Fairbanks, Juneau / MARY (MISSY) H. FEELEY, ExxonMobil Exploration Company, Houston, Texas / DEBRA HERNANDEZ, Hernandez and Company, Isle of Palms, South Carolina / ROBERT A. HOLMAN, Oregon State University, Corvallis / KIHO KIM, American University, Washington, DC / BARBARA A. KNUTH, Cornell University, Ithaca, New York / ROBERT A. LAWSON, Science Applications International Corporation, San Diego, California / GEORGE I. MATSUMOTO, Monterey Bay Aquarium Research Institute, California / JAY S.

SMITHSONIAN NATIONAL MU-**SEUM OF NATURAL HISTORY** The Ocean Studies Board is pleased to have the opportunity to present the Revelle Lecture in cooperation with the Smithsonian National Museum of Natural History through our partnership with the NATION-AL SCIENCE RESOURCES CEN-TER. The museum maintains and preserves the world's most extensive collection of natural history specimens and human artifacts and suppports scientific research, educational programs, and exhibitions. The museum is part of the Smithsonian Institution, the world's largest museum and research complex. Dr. Christian Samper is the director.

OCEAN SCIENCE INITIATIVE The National Museum of Natural History is building upon its substantial foundation in marine science to establish a comprehensive Ocean Science Initiative that will: • Engage, educate, and inspire the public

through state-of the-art displays in the Museum's exciting and ambitious new Ocean Hall, • Extend access to the exhibition, collections, and research through the integrated and dynamic Ocean Web Portal, and • Expand understanding of our oceans through the scholarly, multi-disciplinary Center for Ocean Science.

PAUL FALKOWSKI, PH.D. In this year celebrating the 100th anniversary of Roger Revelle's birth, there has been renewed attention to the looming problems of higher atmospheric concentrations of carbon dioxide both in terms of climate change and alteration of the fundamental chemistry of the ocean. Dr. Falkowski, Board of Governors' Professor at Rutgers University, has devoted his career to biogeochemical studies that serve as the basis for our understanding of the global carbon cycle and the impact of human activities on the fundamental properties of the ocean.

sponsorship The Ocean Studies Board thanks the Office of Naval Research, the U.S. Geological Survey, the National Science Foundation, the National Oceanic and Atmospheric Administration, the Smithsonian Institution, the National Science Resources Center, and the Scripps Institution of Oceanography. This lecture series would not be possible without their generous and continuing support.

The Scripps Institution of Oceanography will host the west coast edition of the Roger Revelle Commemorative Lecture at a later date in La Jolla, California.

We hope you enjoy tonight's event.

Shirley Pomponi CHAIR, OCEAN STUDIES BOARD

Susan Roberts
DIRECTOR, OCEAN STUDIES BOARD

PEARLMAN, The Boeing Company (retired), Port Angeles, Washington / ANDREW A. ROSENBERG, University of New Hampshire, Durham / DANIEL L. RUDNICK, Scripps Institution of Oceanography, La Jolla, California / ROBERT J. SERAFIN, National Center for Atmospheric Research, Boulder, Colorado / ANNE M. TREHU, Oregon State University, Corvallis / PETER L. TYACK, Woods Hole Oceanographic Institution, Massachusetts / DAWN J. WRIGHT, Oregon State University, Corvallis / JAMES A. YODER, Woods Hole Oceanographic Institution, Massachusetts STAFF SUSAN ROBERTS, Board Director / CLAUDIA MENGELT, Program Officer / SUSAN PARK, Program Officer / JODI BOSTROM, Associate Program Officer / DEBORAH GLICKSON, Associate Program Officer / SHUBHA BANSKOTA, Financial Associate / PAMELA LEWIS, Administrative Coordinator / HEATHER CHIARELLO, Senior Program Assistant / JEREMY JUSTICE, Program Assistant

Н

the ocean

has been a feature of Earth's surface for at least 4 of the past 4.5 billion years and has provided the primary environment for the evolution of microbes that drive the biogeochemical cycles on Earth. Over this incomprehensively long period of time, the ocean and the organisms in it have witnessed extreme changes, ranging from complete coverage with ice to extensive periods when there was no ice at all; periods of extraordinary extinction of animal life due to meteorite impacts and volcanic outgassing, when the ocean became acidic and anoxic for extensive periods of time, to long intervals of relative stability that fostered the evolution of animals, from which we ultimately descend. Yet most of us never think about how the organisms that drive the biogeochemical cycles in the ocean evolved and have survived these extreme environmental changes to provide the backbone of life on Earth. Indeed, microbes in general and marine microbes in particular are the real stewards of life on Earth. We have a lot to learn about how they work and function to make this a habitable planet. In this lecture, I would like to examine how life evolved in the ocean; how it impacted the evolution of mammals, including humans; and how we are impacting the ocean.

Six major elements, H, C, N, O, S, and P comprise the major building blocks for all biological macromolecules (Schlesinger 1997). The biological fluxes of the first five are largely driven by microbially catalyzed, thermodynamically constrained reactions that involve the transfer of electrons from one molecule to another; in a real as well as figurative sense, life is electric. The movement of electrons leads to the evolution of coupled half cells, which in turn evolved into a global system of linked elemental cycles. For example, all animals transfer electrons from organic carbon to oxygen, thereby leading to the production of water vapor (which we exhale with each breath). This is one half cell. Photosynthetic organisms, like algae and plants, use the energy of the sun to oxidize water using the electrons and protons to make organic matter. That is the complementary half cell. These two half cells are extremely well coupled, so that on long time scales, there is very little

um but yet is robust over hundreds of millions of years (Falkowski and Godfrey 2008).

Biological processes do not operate in a vacuum. On geological time scales, resupply of C, S, and P is critically dependent upon tectonics, especially volcanism and rock weathering (Fig. 1). The role of geological processes in the evolution of life is seldom appreciated by biologists; yet without these processes, biogeochemical cycles would inevitably come to an end. Feedbacks between the evolution of microbial metabolic and geochemical processes create the average oxidation state of the oceans and atmosphere. The evolution of oxygen in Earth's atmosphere occurred about 2.3 billion years ago and is an emergent property of microbial life on a planetary scale. The biological oxidation of Earth is driven by photosynthesis (Falkowski 2002).

Over the past few years, biologists and geologists have worked to develop a metabolic map of Earth. The fluxes of the major elements correspond to specific microbial pathways, all of which originated in the ocean and all of

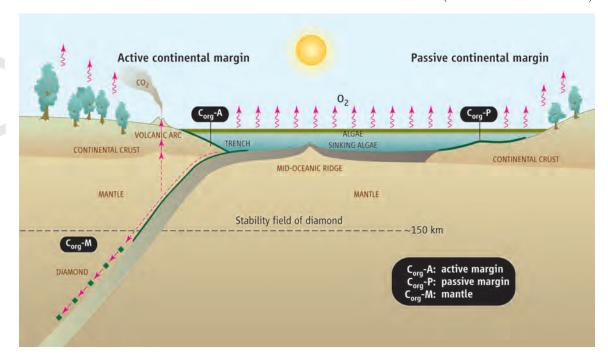
which can still be found there. The genes encoding the machinery responsible for these fluxes are the "core" genes of life on Earth. These microbial "machines" catalyze the electron transfer reactions that drive the half cells described earlier. Although the genes are often highly conserved, complexes did not evolve instantaneously. Indeed, the order of their appearance in metabolism and analysis of their evolutionary origins are obscured by lateral gene transfer and extensive selection. These processes make it extremely challenging to reconstruct how electron transfer reactions came to be catalyzed (Falkowski and Godfrey 2008). Regardless, the pathways that evolved to sustain this electron market contain relatively few genes. Indeed, this appears to one of the most amazing things about life - a very small number of "core" genes are responsible for the operation of this planet.

There is little understanding of how long it took for the various reactions to develop from local events to global alteration of the planet. However, the most transformative process, beyond

change in oxygen on Earth; in other

words, biological processes tend to

reach a global steady state that is


far from thermodynamic equilibri-

doubt, was the evolution of oxygenic photosynthesis – the splitting of water. That process is the most complex energy transduction process in nature: over 100 genes are involved in making several macromolecular complexes (Shi, Bibby et al. 2005) and appears to have been one of the last pathways to have evolved. Perhaps most profoundly, we still do not really understand

how it works! Regardless, the evolution of oxygenic photosynthesis per se did not lead to an atmosphere containing oxygen – for that to occur, organic matter formed by algae had to be buried in the Earth's interior – a very small fraction of that organic matter would eventually become the fossil fuels that we extract to drive our industries. Indeed, without the contribu-

tion of geological processes, we never would have had oxygen on the planet. Once the processes got going, though, oxygen became the second most abundant gas on Earth and profoundly influenced the evolution of life forever after. All the oxygen on Earth is ultimately derived from the water in the ocean – the energy required to produce the 4 x1018 moles of oxygen is

FIGURE 1. PROCESSES CONTROLLING THE FLUX AND ACCUMULATION OF 02 ON EARTH (FALKOWSKI AND ISOZAKI 2008).

equivalent to the explosion of over a trillion hydrogen bombs! No wonder there is a lot of thought being given to try to understand the mechanism responsible for splitting water with energy from the sun.

From a biogeochemical perspective, the history of Earth can be divided into two major periods. The first 2.5 billion years was the "Research and Development" eon, when all the major metabolic pathways evolved. The last 2 billion years has been the "Microsoft" eon, when life appropriated the metabolic processes derived long ago and marketed them in new forms. From a metabolic perspective, evolution basically stopped around 2 billion years ago. Animals and plants are examples of new incarnations of ancient metabolic processes; the world can go along very well without these minor evolutionary distractions. However, the core set of genes that runs the planet is very precious. To make sure the core set is not lost, nature distributed the genes across the tree of life - but the entire repertoire is retained in marine microbes. Indeed, the ocean is the corporate memory

of the planet. In essence, microbes can be viewed as vessels that ferry metabolic machines through strong environmental perturbations on into vast stretches of relatively mundane geological landscapes. The individual species come and go; yet the core machines survive surprisingly unperturbed.

It is likely that the individual reactions that make life possible on Earth will be reasonably well described within the next few decades. Delineating how these machines co-evolved and operate together to create the electron flows that predominate today on Earth's surface remains a grand challenge. However, understanding how biogeochemical cycles function is critical to the survival of human beings as we continue to influence the fluxes of matter and energy on a global scale. In that regard, understanding the maintenance of the reservoir of core genes in the ocean isn't simply an academic exercise; it is critical to our survival as a species. Marine microbial life can easily live without us, but we cannot survive without the global catalysis and environmental transformations they provide.

In the 20th century of the com-

mon era, the ensemble of the subpopulations comprising Homo sapiens rapidly expanded. Over a period of 100 years, the population grew from ca. 950 million to more than 6 billion. This unprecedented rate of population expansion was accompanied by an unprecedented strain on Earth's natural resources. Humans presently consume or exploit ca. 42% of the terrestrial net primary production (Vitousek, Mooney et al. 1997). Our species has displaced, extinguished, or impacted virtually every extant vertebrate species (Jackson, Kirby et al. 2001). With very few exceptions, humans have altered the flow and chemical form of all naturally occurring elements and all of the fresh water on the planet (Falkowski, Scholes et al. 2000) (Table 1). Continued population growth through at least the first half of the 21st century will undoubtedly force an even greater exploitation of resources, with an inevitable increase in the human footprint on the ecological landscape. Clearly such a condition is not sustainable. Perhaps most disturbingly, no off-ramp is visible in the trajectory of human domination of Earth's ecosystems. Economic policy simply is at odds with

TABLE 1. EXAMPLES OF HUMAN INTERVENTION IN THE GLOBAL BIOGEOCHEMICAL CYCLES OF CARBON, NITROGEN, PHOSPHORUS, SULFUR, WATER, AND SEDIMENTS. DATA ARE FOR THE MID-1900s (FALKOWSKI, SCHOLES ET AL. 2000).

Element	Flux	Magnitude of flux (millions of metric tons per year)		% change due to human
		Natural	Anthropogenic	activities
С	Terrestrial respiration and decay CO2	61,000	/	
	Fossil fuel and land use CO2		8,000	+13
N	Natural biological fixation	130		
	Fixation owing to rice cultivation, combustion of fossil fuels, and production of fertilizer		140	+108
P	Chemical weathering	3		
	Mining		12	+400
s	Natural emissions to atmosphere at Earth's surface	80		
	Fossil fuel and biomass burning emissions		90	+113
O&H	Precipitation over land	111 X 10 ¹²		
(as H2O)	Global water usage		18 X 10 ¹²	+16
Sediments	Long-term preindustrial river suspended load	1 X 10 ¹⁰		
	Modern river suspended load		2 X 10 ¹⁰	+200

biogeochemical reality, and money cannot substitute for microbial metabolism. We have to pay attention to how the world functioned before human domination of the planet, because ultimately we will have to repair what we have broken.

THE RED QUEEN HYPOTHESIS

There is a notion, put forward in an elegant paper by van Valen (1973) that coevolution increases stability by maintaining a constant rate of extinction and radiation over millions of years. The basic idea is called the Red Queen hypothesis. The gist of this is that in tightly coevolved interactions evolutionary change in one species (e.g., a prey or host) could lead to the extinction of the other species (e.g., a predator or parasite). This idea, named after Lewis Carroll's character in Alice in Wonderland, postulates that a species must evolve to keep pace with environmental selection or the species will go extinct. In other words, the species has to "run" to stay in place. It is a useful heuristic device – which may or may not be correct – but serves as a starting point to examine how human evolution diverged from other species that inhabit Earth.

THE EVOLUTION OF HUMANS

Our species evolved approximately 200,000 years ago – a mere blink of an eye in the history of Earth (Carroll 2003). The evolution of *H. sapiens* rapidly changed Earth. Two major attributes of humans distinguish us from all other organisms (Box I). These attributes have allowed humans to dominate the terrestrial landscape but not without ecological costs, many of which are not yet recorded in the ledger of natural history.

A distinguishing feature of human evolution is clearly the evolution of complex language (Lieberman 2000). Human language permits communication of abstract thoughts through oral, visual, and written media. In the modern epoch, our communication skills are so honed that we can transfer, virtually instantaneously, vast bodies of knowledge across generational and geographic boundaries without changing a single gene within our gametes. While other organisms, especially vertebrates, have limited communications skills, the quantum evolution that led to the extraordinary development of such attributes in H. sapiens appears unprecedented in the history of the planet. Language gave humans an incredible capacity to rapidly accommodate to, and indeed affect, the environment in ways no other organisms can.

The second attribute is the ability to create advanced tools. In this capacity, humans have excelled not only in fabricating instruments to acquire food and build shelters more efficiently — processes that clearly have parallels in other organisms — but also in altering natural materials to produce substances that otherwise never would have been found in nature. The examples of such massive alterations of materials are so enormous and so obvious to most of us that we tend to overlook their importance.

The result of the evolution of language and the ability to create advanced tools is, however, more subtle and more dangerous. These two traits have permitted, and ultimately perhaps even required, a new form of knowledge, which I call distributed knowledge. If we consider what each of us individually knows or knows how to do, we are hard pressed to recreate the world most of us know. For

example, someone somewhere knows how to make a light bulb, but very few of us individually have that knowledge. Moreover we no longer go to a professional light-bulb maker and contract with him or her to make some specific light bulbs for us. Rather, a community of people has made machines that make and shape the glass for the bulbs; extract, purify, and fashion the tungsten elements, make the metal base; pull the vacuum during the manufacture; etc. Light bulbs are now made anonymously by groups of individuals, working with machines, made by other groups of people, each with specific individual knowledge. The knowledge is distributed.

The ensemble of human knowledge and skills is transmitted across geographical boundaries without need for genetic alteration. In so doing, skills are traded to create an economy. I assert that a fundamental emergent property of the evolution of speech and tool making is economic structure — a phenomenon unique to human society. Economic structure has led to global resource plunder — unlike anything seen at any time

in our planet's history. In one year, we extract the equivalent of one million years worth of fossil fuel. We burn these stored reserves to produce energy – a primitive technology - but have developed the tools to plunder all fossil fuel reserves on the planet. The result is clearly damaging; the upper ocean is about 0.5° C warmer today than 50 years ago and is getting warmer each decade. That process itself is changing ocean circulation and productivity. Simultaneously, the ocean is getting more acidic, and organisms that build carbonate structures, like corals, are greatly endangered. Yet in the halls of industry, global climate change may be viewed with skepticism, or worse. Clearly this course is not sustainable; yet we have not invested in the technological solutions. It is still much cheaper to buy oil that was produced by algae 50 million years ago than to make oil from algae today; although in the long run, the latter is sustainable. How can we escape from this dead end?

THE ROLE OF SCIENCE

Over the past 30 years or so, scientists have increasingly documented

the effects of humans in plundering Earth's resources. The documentation has had a relatively modest effect on societal responses. Sustainable development requires the mass expansion of individual altruistic behavior, a process that itself requires education and a reevaluation of how human economic structures can be used to preserve and conserve natural resources for future generations of humans. Education in developed countries can markedly alter patterns of resource use, but this must be coupled with intelligent investment of wealth in technologies that are inherently sustaining. For example, the photocatalyzed extraction of hydrogen from water would provide a potentially limitless, clean energy source; however, in the U.S., the investment in this process is less than \$10 million per annum. A single breakthrough in catalysis could change the world forever. Similarly, the development of N2-fixing crops or the replacement of relatively rare metals (such as titanium) in machines with alternatives derived from renewable resources can alter the course of human impact on Earth. Н

But science and technology are not the only solutions - human ingenuity must be coupled to human behavior. The concept that humans are partners in ecosystems is not new but does not pervade the human psyche, except in isolated, nomadic tribes, where there is a clearer, intuitive appreciation for habitat and a respect for it. We must leave the "documentation" stage of scientific enquiry and enter a social/technological stage, where realistic outcomes (both positive and negative) can be envisioned and integrated solutions explored. Nonlinearities in policy that can lead to dramatic changes in human behavior should be identified. Science does not simply serve as a knowledge base - it must also serve as a conscience of society - reminding wealth "creators" that sustainable resource management is the only viable option for future generations.

FINAL REMARKS The ocean and atmosphere are huge, and we are small. We tend to think we cannot really make an impact on the ecology or biogeochemical cycles of Earth. Yet over the past 100 years, in particular, we have increasingly altered the trophic structure of the ocean, as well as its physical circulation and chemical properties. While human impacts will surely alter ecosystem functions, the core metabolism of the ocean will go on. The microbes will long outlive us. Rather, ironically, humans are the fragile species that will lose capabilities of using the ocean as a source of food and novel molecules. Our future is intimately tied to that of the ocean. We have to begin viewing the oceans as key component of the Earth system - one that we cannot live without.

REFERENCES Carroll, S. B. (2003). "Genetics and the making of Homo sapiens." Nature 422:849-857. / Falkowski, P., R. J. Scholes, et al. (2000). "The global carbon cycle: A test of our knowledge of earth as a system." Science 290(5490): 291-296. / Falkowski, P. G. (2002). "The ocean's invisible forest." Scientific American August: 54-61. / Falkowski, P. G. and L. Godfrey (2008). "Electrons, life, and the evolution of Earth's oxygen cycle." Philos Trans R Soc Lond B Biol Sci 363(1504): 2705-2716. / Falkowski, P. G. and Y. Isozaki (2008). "Geology: The story of O2." Science 322(5901): 540-542. / Jackson, J. B. C., M. X. Kirby, et al. (2001). "Historical Overfishing and the Recent Collapse of Coastal Ecosystems." Science 293(5530): 629-637. / Lieberman, P. (2000). Human Language and Our Reptilian Brain: The Subcortical Bases of Speech, Syntax, and Thought. Cambridge, Harvard University Press. / Schlesinger, W. H. (1997). Biogeochemistry: An Analysis of Global Change. New York, Academic Press. / Shi, T., T. S. Bibby, et al. (2005). "Protein Interactions Limit the Rate of Evolution of Photosynthetic Genes in Cyanobacteria." Mol Biol Evol 22(11): 2179-2189. / van Valen, L. (1973). "A new evolutionary law." Evol. Theory 1: 1-30. / Vitousek, P., H. Mooney, et al. (1997). "Human domination of earth's ecosystems." Science 277: 494-499.

REVELLE ALUMNI

DI

DR. ROGER DR. PIELKE, JR. B.

DR. RICHARD B. ALLEY

ADM. JAMES D. WATKINS

DR. MICHAEL K. ORBACH

DR. MARCIA K. MCNUTT

DR. SHIRLEY A. POMPNI

DR. PETER BREWER

The nation turns to the National Academies—National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council—for independent, objective advice on issues that affect people's lives worldwide. www.national-academies.org

