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Virtual Logistics

Keep mics and cameras on while speaking and while
participating in a panel.

Committee members and panelists, please use the raise hand
function or submit questions through the chat

If you are watching the webinar, submit questions or
comment through Q&A

Presentations and recording will be posted on our project

website: https://www.nationalacademies.org/our-work/a-research-
strategy-for-ocean-carbon-dioxide-removal-and-sequestration

Questions or information about the study, contact Kelly
Oskvig, koskvig@nas.edu
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Background

e NASEM Consensus Study
e Sponsored by the ClimateWorks Foundation

 Exploring 6 Ocean-based CDR Strategies:

Identify the most urgent unanswered scientific and technical questions
needed to: assess the benefits, risks, and sustainable scale potential CDR
approaches

Define the essential components of a research and development program and
specific steps that would be required to answer these questions;

Estimate the costs and potential environmental impacts of such a research
and development program to the extent possible in the timeframe of the
study.

Recommend ways to implement such a research and development program
that could be used by public or private organizations.
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SCIENCES - ENGINEERING - MEDICINE



Workshop Series

* January 19, 2021 - Part 1: Setting the Stage

* January 27, 2021 - Part 2: Technological and Natural

Approaches to Ocean Alkalinity Enhancement and
CO2 removal

* February 2, 2021 - Part 3: Ecosystem Recovery and
Seaweed Cultivation

* February 25, 2021 - Part 4: Nutrient Fertilization and
Artificial Upwelling and Downwelling
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Welcome

Nutrient Fertilization: Opportunities and
Challenges
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Artificial Upwelling and Downwelling:
Opportunities and Challenges
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Nutrient Fertilization: Challenges and Opportunities
Keynote (30 minutes):
Philip Boyd

Institute of Marine and Antarctic Studies, University of Tasmania, Australia

OUTLINE

Introduction — macro versus micro-nutrient fertilisation
Ocean lron Fertilisation (OIF) — what is the state-of-the-art?
The importance of foresighting in developing an R&D Agenda for OIF

Working backwards - Knowledge gaps
Full Implementation & Deployment
Nested Pilot Studies
New Research Targets
Opportunities & Challenges

NASEM Ocean-based CDR Workshop 25 February 2021



How does nutrient fertilization lead to Carbon Dioxide Removal?
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Nutrient limitation patterns

A) Diatom Growth Limitation

Nitrogen 55.73%, Iron 27.67%, Silica 12.54%, Phosphorus 1.405%
Light 2.645%, Replete 0.000%

ENitrogen Miron MPhosphorus Silicon
HLight WTemperature WNReplete
B) Small Phytoplankton Growth Limitation

Nitrogen 55.88%, Iron 36.34%, Phosphorus 1.426% (Moore et al., 2004).
Light 3.788, Replete 2.556%



Introduction Macro- versus micro-nutrient fertilisation

105:1 106:16:1

Based on stoichiometry, Iron yields a much bigger C footprint than the macronutrients

“Give me a tanker of iron, and I'll give you an Ice Age.”




Introduction - from mesoscale fertilisation experiments we

know much more about the effects of iron on the C cycle 10
I I I I I

5.0

- 105

0.05

(O Deliberate iron fertilisation experiments @ Natural iron fertilisation studies

) (O Oceanic geoengineering trials or pilot studies (including
Deliberate phosphorous iron fertlisation & nutrient upwelling using ocean pipes)

There have been two mesoscale phosphorus enrichment experiments in waters
considered to be phosphorus-limited, in the Eastern Mediterranean and the subtropical
North Atlantic. Contrary to expectations, neither study showed any significant increase
in either primary production or chlorophyll concentrations.



MACRONUTRIENT FERTILISATION

Many of the issues and challenges are similar to that facing OIF

OIF is the best understood of the marine climate invention approaches
And for that reason will be the focus of this presentation

References

Ocean Nourishment Corporation: What we do, http://www.oceannourishment.com/what-we-do (Accessed 6 October
2020)

R. J. Matear and B. Elliott, J. Geophys. Res., 2004, 109, C04001.
D. P. Harrison, Environ. Res. Lett., 2017, 12, 035001.
M. W. Lawrence, Int. J. Global Warming, 2014, 6, 15.

Williamson, P., P. W. Boyd, D. P. Harrison, N. Reynard and A. Mashayek
(in review) Biologically-based negative emissions in the open ocean and coastal seas. Royal Society of Chemistry.



OIF has been well studied relative to other CDR ocean methods

| 2006 | 2007 | 2008 | 2009 | 2010 ] 2011 { 2012 f 2013 ] 2014 | 2015 |
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OIF - WHAT IS THE STATE OF THE ART?

A trace element of
pivotal importance

for phytoplankton
growth and productivity

10 microns

Cvic
PS I Cytbhgf " PSI
The Photosynthetic apparatus — the cell’s engine room

Images courtesy B Twining (Bigelow)



A Gradualist approach to iron enrichment research

Lab — contained

=

Field - contained Field - uncontained
= )

Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic

John H. Martin & Steve E. Fitzwater

Moss Landing Marine Laboratories, Moss Landing,
California 95039, USA

An interesting oceanographic problem concerns the excess major
plant nutrients (PO,, NO;, SiO;) occurring in offshore surface
waters of the Antarctic'™> and north-east Pacific subarctic Oceans®.
In a previous study®, we presented indirect evidence suggesting
that inadequate Fe input was responsible for this limitation of
growth; recently we had the opportunity to seek direct evidence
for this hypothesis in the north-east Pacific subarctic. We report
here that the addition of nmol amounts of dissolved iron resulted
in the nearly complete utilization of excess NO,, whereas in the
controls—without added Fe—only 25% of the available NO, was
used. We also observed that the amounts of chlorophyll in the
phytoplankton increased in proportion to the Fe added. We con-
clude that Fe deficiency is limiting phytoplankton growth in these
major-nutrient-rich waters.

1988

Change in the concentrations of iron in different
size fractions during a phytoplankton bloom n
controlled ecosystem enclosures — R T ¥ TR N

Volume 600 10 October 1996 $10.00

Jun Nishioka®*, Shigenobu Takeda®, C.S. Wong "

iron fertilization in the
equatorial Pacific

1996 1996 to 2008
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State-of-the-Art — Fundamental knowledge

Understanding how iron regulates many ocean processes

DIRECT
Photosynthesis
Growth rate, NPP
Nutrient uptake (Si:N)
Species composition
Exudation - DOC

Bacterial processes

INDIRECT
S, C, N, Si biogeochemistry

Export flux

Gas release and drawdown

Foodweb structure

Zooplankton growth & reproduction

Faunistic shifts
Biogenic gases

Grazer physiology



Synthesis of the fundamental knowledge

Lab — contained Field - contained d

e

Iron deficiency limits phytoplankton
growth in the north-east Pacific sub-

John H. Martin & Steve E. Fitzwater
Moss Landing Marine Laboratories, Moss Lan.

California 95039, USA
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A relational database is available at
BCO-DMO

Boyd et al. (2012)

The datasets from the 12 OIF’s have been archived

Table 1. The iron enrichment experiments in the SCOR WG 131 data
compilation effort are listed along with the FeeP and LOHAFEX projects.
References to the experiments are in the text.

Voyage
Experiment Duration Data Stored Database Location
lronEx | Oct—Nov/1993 Some data BCO-DMO 5°S, 90°W
[ronEx Il May-Jun/1995 Most data BCO-DMO 4°S, 107°W
SOIREE Jan—Mar/1999 Most data BCO-DMO 61°S, 140°E
EisenEx Oct-Dec/2000 Most data PANGAEA 48°S, 21°E
SEEDS | Jun—Aug/2001 Most data BCO-DMO  48.5°N, 164.5°E
SOFeX-N Jan—-Mar/2002 Most data BCO-DMO 55°S, 172°W
SOFeX-S Jan—-Mar/2002 Most data BCO-DMO 66°S, 172°W
SERIES Jun-Aug/2002 Most data BCO-DMO 51°N, 144.5°W
EIFEX Jan—Mar/2004 Many data PANGAEA 50°552°E
SAGE Mar-Apr/2004 Most data BCO-DMO 46.5°S, 172°E
FeeP Apr—May/2004 Some data BODC 27.6°N, 22.4°W
SEEDS II Jul-Aug/2004 Most data BCO-DMO 48°N, 166°E
LOHAFEX Feb—Mar/2009 Some data PANGAEA 48°S, 15°W
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Figure 3. A summary of the timescales of biological responses (log time scale, 0 denotes

iron release), from photosynthetic to biogeochemical, following purposeful mesoscale

iron enrichment. F,/F_, is phytoplankton photosynthetic competence; NPP denotes

Boyd et al. (2012)



LETTER

State_Of_the_Art OIF and Climate :—I‘Mm’m

Southern Ocean dust-climate coupling over the past
four million years

Alfredo Martinez - Garcia®*, Antoni Rosell-Melé***, Samuel L. Jaccard!, Walter Geibert®, Daniel M. Sip;mana & Gerald H. Ilau.ug"2
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OIF and climate OIF Is not just a carbon story — its outcome will be
driven by the cumulative change in radiative forcing

Comparison of radiative forcing IPCC (1996)

3
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State of the art — Location, Location, location

(@) 0.5

0.4 geoengineering
potential

. EIFEX Fe-stimulated polar bloom
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surface
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Subsurface export efficiency

There were also major regional differences in CO, drawdown,
DMSP/DMS dynamics, production of CH, and N,O subsurface, and
foodweb effects.

Boyd & Bressac (2016)



State-of-the-art - surprises in need of corroboration

Are mesoscale perturbation experiments in polar waters prone to
physical artefacts? [Evidence from algal aggregation

modelling studies . _ i _ _
Philip W. Boyd,' George A. Jackson,” and Anya M. Waite’ |r0n eanChment StImUIateS tOXIC dlatom DI‘OdUCtIOI‘I

high-nitrate, low-chlorophyll areas

Charles G. Trick®', Brian D. Bill><, William P. Cochlan®, Mark L. WellsY, Vera L. Trainer<, and Lisa D. Pickell®

Eificiency of carbon removal per added iron|in
ocean iron fertilization

Hein J. W. de Baar!'?*, Loes J. A. Gerringa?, Patrick Laan?, Klaas R. Timmermans*

Predicting and monitoring the efiects of large-scale
ocean iron fertilization on marine trace gas emissions

C.S. Law® Predicting and verifying the intended and
unintended consequences of large-scale
ocean iron fertilization

John J. Cullen!*, Philip W. Boyd?

In



State-of-the-art

The 100 - 1000 km? mesoscale OIF experiment is an imperfect tool

Fig. 2. A schematic of the putative SOIREE ‘chemostat’—the exchange between the iron-fertilised waters of the SOIREE
patch and the surrounding HNLC waters during the experiment. Solid black arrows denote diffusion of water to and
from the water masses at the periphery of the patch, while the large open arrows represent the effect of strain in the
horizontal currents stretching the patch. The area of the fertilised patch increased from 50 to ~ 250 km~ by day 13, and
was > 1000 km* by day 40 (see Abraham et al. (2000) for more details). Figure courtesy of Edward Abraham.

P.W. Boyd, C.S. Law | Deep-Sea Research I 48 (2001) 2425-2438



Issues to consider for the development of a R&D agenda to progress ocean-based CDR approaches

c‘ﬂ r r E 5 p D n d E n c E MATURE CLIMATE CHANGE | WOL 9 | MAY 20n% | 342 | wwwonaturecomenatursclimatechangn

Foresight must guide geoengmeerlng research
and development ooy

“It is essential to first elucidate the longer-term goals and then identify the trajectory towards a full implementation.”

“This trajectory must be formulated around the scientific and engineering questions relevant for any geoengineering
technique at each stage of its development.”

—

Implementation

State-of-the-art New Research Nested Pilot & Deployment

Targets studies




Issues to consider for the development of a R&D agenda to progress ocean-based CDR approaches
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Foresight must guide geoengineering research
and development

“It is essential to first elucidate the longer-term goals and then identify the trajectory towards a full implementation.”

“This trajectory must be formulated around the scientific and engineering questions relevant for any geoengineering
technique at each stage of its development.”

—

. Full Implementation
State-of-the-art New Research Nest.ed Pilot & Deployment
Targets studies
Reveals Knowledge Upscaling Repeated deployments
Gaps and challenges Suitable technologies Where and at what scale
Location(s) Other actors

Baseline for D&A



Issues to consider for the development of a R&D agenda to progress ocean-based CDR approaches
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Foresight must guide geoengineering research
and development

“It is essential to first elucidate the longer-term goals and then identify the trajectory towards a full implementation.”

“This trajectory must be formulated around the scientific and engineering questions relevant for any geoengineering
technique at each stage of its development.”

—

Full Implementation

State-of-the-art New Research Nested Pilot & Deployment
Targets studies
Reveals Knowledge Upscaling Repeated deployments
Gaps and challenges R&D éger?da set by Suitable technologies Where and at what scale
Foresighting Location(s) Other actors

Baseline for D&A



Full Implementation
& Deployment

Repeated deployments
Of OIF over multiple years

Boyd & Bressac
(2016)

Working backwards - Knowledge gaps

Proving “Additionality” sensu Kyoto Protocol
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Full Implementation
& Deployment

Working backwards - Knowledge gaps

Where and at what scale?

Circulation

Depth of permanent pycnocline
Air/sea equilibration timescales
Resident Fauna

Degree of Anthropogenic change
Ocean temperature
Depth/bathymetry




Full Implementation
& Deployment

Other actors

Its unlikely that only one
Climate intervention will be deployed
In the ocean

There are also likely to be

Concurrent feedbacks, variability, altered
emissions (hysteresis)

That need to be dissected out

Boyd & Bressac
(2016)

Working backwards - Knowledge gaps

sinks

climate variability [ sideeffect i climate change ] CO,emissions

envelope from GeoEng +ve feedback
climate change GeoEng GeoEn GeoEng
—ve feedback method a . method b . method ¢

Figure 5. A major challenge for all ocean gecengineering approaches, including iron fertilization, is the detection and
attribution of carbon sequestration, and any side-effects on the ocean system. Panel (g} illustrates this challenge using
hypothetical changes in iron stocks and/or bioavailability that will likely be mediated by naturzl variability (such as El Nino



Full Implementation
& Deployment

Baseline for D&A

Working backwards - Knowledge gaps

Anthropogenic alteration of Fe biogeochemistry

Boyd & Bressac (2016)

i)

increases

decreases

iron supply climate altered climate change

vnrinhiﬁly envelope . bicavailability . altered iron stocks
. iron added by . changes in abiotic floristic

gEOEngIneering iron cycling shifts



Full Implementation
& Deployment

Baseline for D&A
We still do not have

a baseline for C sequestration

In the modern ocean!!
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Working backwards - Knowledge gaps

Conspicuous imbalances between POC downward export and export fluxes

derived from geochemical tracers  OR
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the C demand from mesopelagic biota

Assessing the apparent imbalance between geochemical and biochemical
indicators of meso- and bathypelagic biological activity: What the @$#! is
wrong with present calculations of carbon budgets?

Adrian B. Burd **, Dennis A. Hansellﬂb, Deborah K. Steinberg ©, Thomas R. Anderson d Javier Aristegui €,
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Full Implementation

& Deployment Working backwards - Knowledge gaps

Baseline for D&A
Multi-faceted ways to
Sequester C in the modern ocean

1,000 years

Multi-faceted particle pumps drive
carbon sequestration in the ocean

Philip W. Boyd™, Hervé Claustre®, Marina Levy>#, David A. Siegel*® & Thomas Webers-#

Boyd et al. (2019) Figure courtesy of Tom Weber



Nested Pilot

studies Working backwards - Knowledge gaps

Upscaling — we need a different method than the 1000 km? SF® labelled OIF patch for next gen pilot studies

CO, DMS

Export

Fig. 5.5 A schematic of the interactions between the iron-enriched patch of upper ocean and the
surrounding HNLC waters redrawn after Boyd and Law [31]. Solid bhlack arrows denote diffusion



Nested Pilot
studies

Working backwards - Knowledge gaps

Upscaling — what about a 10000 km? OIF patch for next gen pilot studies?

Designing the next generation of ocean iron
fertilization experiments

Andrew J. Watson'*, Philip W. Boyd?, Suzanne M. Turner!, Timothy D. Jickells!,

Peter S. Liss!
MEPS 2008

“Our present understanding suggests that any carbon
sequestration will occur as the net result of changes in the air—
sea flux integrated over millions km.and many years, and can
only realistically be assessed by modelling.”



Nested Pilot
studies

——350
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——330
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I 280
270

SERIES experiment (NE subarctic Pacific)

Concurrent ship survey maps of CO, drawdown by the
Blooming phytoplankton, which match the shape of the bloom
as observed from SeaWiFS satellite images

No ships were present for re-equilibration of the upper ocean
The often neglected key step in C sequestration

0 300
2

Algal carbon (mg) Boyd et al. (2004)



Nested Pilot
studies

Suitable technologies

New BGC-ARGO floats
With UVP6 deployed
Jan 2021

In S. Ocean

Temperature_degC
w w

-

200 4

Pressure_dbar

800 4

1000

Pressure_dbar

1000

nitrate-concentration_uMal/l

600

800

1000

UVP particle count [813, 2580[

2021-01-22 15:17:01

&

~

<

400 4

600 4

0.5 1.0
chlerophyll-a_ug/l

'\..\

N

30 35 40

T

25 5.0

1000

1000

Working backwards - Knowledge gaps
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Nested Pilot
studies

Location(s)
Different Iron supply rates
In a natural setting

Have we optimised the
iron supply rate?

Is simply adding more Fe better?

Boyd & Bressac (2016)
From Trull et al. (2014)

Working backwards - Knowledge gaps

0 2.5
B3 16/11/2011
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Figure3. An ocean colour image from MODIS from mid-November 2011 highlights four distinct iron-fuelled surface chlorophyll
features (vertical coloured scale bar in mg chlorophyll m—) that were sampled during the KEOPS Il GEOTRACES process study
[82]. The highest measured downward POC export was in a region with sustained but moderate iron supply (open cirde to the
left of horizontal arrow). Other regions sampled, dockwise {open symbols) from top left are Kerguelen coastal waters; Polar
Front plume; redirculating feature and the plateau (redrawn from [84]).

Highest POC export
In region with modest
But sustained Fe supply




New Research
Targets

Working backwards - Knowledge gaps

R&D agenda set by

Foresighting

The importance of line-of-sight from modelling

COI’I‘ESPOI‘IdEI‘ICE

Foresight must guide geoengineering research

and development

Lenton et al. (2019)

“As part of this foresighting, there is a strong requirement for (scale- and process appropriate)
modelling studies to develop these trajectories from research towards implementation.”

“Critically, this development must precede field experimentation to enable exploration of the wide
array of issues around what a pilot study might reveal.”

“To inform the development of realistic trajectories, fit-for-purpose modelling simulations must also
look well beyond a pilot study, so as to uncover the characteristics of the subsequent suite of

more advanced and upscaled experiments with respect to efficacy, side-effects, and
detection and attribution.”



New Research
Targets

Fundamental

Knowledge gaps

That need to be merged with
foresighting

Table 1. Major uncertainties in the effects of deliberate ooean iron fertilization

Procass Issue Finding Comments
Carbon sequestration  Carbon fixation in surface water  Variable® Latitude, mixed layer depths + light
efficiency co-limitation

Carbon expaort Monedittle/significant® Limited duration of studies

Dapth of carbon export Poorly constrained

Duration of carbon sequestration  Unknown Unanswerable by observations alons

Influsnce on
dizzolved oxygen

Froduction of other
climate-active gases

Effects on ecosystems
and biogeoschemistry

Fraction fized from atmosphara

Formation of subsurface
O minima

hethane & nitrous cxide
Dimethylsulphide
Biogenic halocarbons

Biogenic hydrocarbons,
including alkyl nitrates

Fhytoplankion speces shifts
Mesozooplankion stocks

Higher trophic levals

Macronutrient uptake

Beduction of nutrient transport

Mutrient remineralization

Poorly Enown

Poorly known®

Mo effect/possible
anhancemantd=d

Mo change! increase®

Redoction/no change’
increasas

Mo change/increasa™s

bAainly towards diatoms™
Mo change/increase®

Unknown

Small to significant®

Important in upwelling
regions®

hlay affect global
distributions

Likaly unanswearabla by absarvations
alone

Potentially harmful, depth
dependant

Significant warming potential

Some evidence that enhancement
is transiant

Pertinent to atmospheric oxidation
chemistry & particle formation
Partinent to atmospheric ceidation
chemistry & particle formation

Ara shifts transient?

Localised increasas within Fe patch
due to arrested vertical migration:
duration of study & longer
reproductive cycles

Limited duration of studies.
Possibility of enhanced secondary
and highar-level production
Mixed layer depths + light
co-limitation

Supply fows to other areas ot off,
&.g. sub-tropical gyres

At present only evident from
medelling studies'

*do Baar ot al. (2005); *Boyd et al. (2007); “Matural Oz minima: e.qg. Arabian Sea & east subiropical Pacific, anthropogenic
minima: e.g. Gulf of Mexico eutrophication; daw & Ling [2001); "Wingenter et al. (2004]; "Walter ot al. (2005); sLiss ot al
(2005), "Cooper et al. (1096); ‘Gnanadesikan at al. {2003); Tsuda et al. 2006

Watson et al.
(2008)



Issues to consider for the development of a R&D agenda to progress ocean-based CDR approaches
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Foresight must guide geoengineering research
and development

“It is essential to first elucidate the longer-term goals and then identify the trajectory towards a full implementation.”

“This trajectory must be formulated around the scientific and engineering questions relevant for any geoengineering
technique at each stage of its development.”

—

Full Implementation

State-of-the-art New Research Nested Pilot & Deployment
Targets studies
Reveals Knowledge Upscaling Repeated deployments
Gaps and challenges R&D éger?da set by Suitable technologies Where and at what scale
Foresighting Location(s) Other actors

Baseline for D&A
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For a range of reasons, OIF is the best studied marine climate
Intervention approach

This holds for field experiments, modelling, governance etc.

OIF also gets used of an example of the problems with marine
Climate interventions — but that’s likely because it has been
Under more scrutiny.

The development of a CDR R&D Agenda should include OIF
As it will serve as a lens to look in depth at other CDR methods

Also recall that out understanding of OIF — despite being
underpinned by a large body of research — was insufficient
To provide a robust scientific assessment during the
development of the GESAMP WG41 Report.
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Summary Table. Examples of geoengineering approaches in eight categories.
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emissions), field studiest
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transient, 100 km scale,
not legal
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Ecological impacts of nutrient fertilization,

from community structure to HABs to fisheries

Francisco Chavez
Monterey Bay Aguarium Research Institute

B2 Opservin
- G Life inrhgsea

Outline (and Conclusions)

e Current understanding on ecological impacts limited to results
from a few short term fertilization experiments

e Ecological impacts (and CDR) are location/season dependent.

 Ecological impacts are linked to the initial food web

e C(Clear relationships between biomass/productivity and fisheries
yield

 Trophic transfer enhanced when habitats are compressed

e Oxygen minimum zones may be good target regions

e The next set of experiments will capitalize on new and
emerging technologies
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Diatoms are the phytoplankton to be the first responders to fertilization
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Diatoms are key

© Monterey Bay, Spring 1995 B IronEx Il Equatorial Pacific 1995

: A  Equatorial Pacific 1992 ¥ Galapagos Fall 1993
—— Plot 1 Regr
25
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Pseudo-nitzschia, domoic
acid, Silver et al. 2010




Open ocean
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Coastal upwelling
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@ Peru

y = 0.020x"*
R® = 0.93

g

10

FISHERIES LANDINGS, kgha ' y !

10 10800

PRIMARY PRODUCTION, g Cm 2 y1

Fig. 3. The annual landings of fish and the primary production (14C uptake) of phytoplankton in a wide variety of
marine ecosystems. Measurements are often not contemporaneous. The regression analysis was performed on
untransformed data. Systems include: (1) Southeast Mediterranean (postAswan dam construction) (2) Bay of Bothnia
(3) Open Gulf of Mexico—Caribbean (4) Sea of Okhotsk (5) Open Mediterranean (6) Adriatic Sea (7) Scotian Shelf (8)
Sea of Japan (9) Bothnian Sea (10) Black Sea (11) Gulf of Finland (12) Gulf of Riga (13) English Channel (14) Baltc
Sea proper (15) Corpus Christi Bay (16) Gardiners and Peconic Bays (17) North Sea (18) Gulf of Thailand (19) Mid
Atlantic Shelf, US (20) Gulf of Maine (21) New England Shelf (22) Apalachicola Bay (23) Georges Bank (24) Great
South Bay. Data sources in Nixon (1982) and Nixon et al. (1986). The relationship is discussed more fully in Nixon

(1988)
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Habitat compression — why Peru produces more fish
than any other region in the world?

I | S i H |
L= -1 L2 i T
e ’ S gl S -

Hig}'; éxygen
Predators care more about concentration than productivity
Are OMZ’s good targets for fertilization experiments?



Seasonally upwelling (fertilization) and productivity can be out of phase
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The future: a new set of tools (and models) for ocean observing




Conclusions

Current understanding on ecological impacts is limited to results
from a few short term experiments

Ecological impacts (and CDR) are location dependent.
Ecological impacts are linked to the initial food web

Clear relationships between biomass/productivity and fisheries
vield

Trophic transfer enhanced when habitats are compressed
Oxygen minimum zones may be good target regions

The next set of experiments will capitalize on new and emerging
technologies
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Natural & artificial iron fertilisation
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Natural fertilisation occurs downstream of islands in the iron-
limited Southern Ocean.

Artificial fertilisation experiments mimic the “island effect”.

Although iron fertilisation stimulates primary production, does
it result in enhanced carbon sequestration?
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Artificial iron fertilisation

e 13 artificial fertilisation experiments
have been performed to date | O Anificial

| 1-a - .. I
e . B
o0 oW
:

 They demonstrated that primary
production can be significantly
enhanced by the artificial addition
of iron

 However, only 1 of 13 experiments
showed any significant change in
the amount of carbon reaching
below 1000 m depth [Yoon et al.,
2018]




Sequestration efficiency

» Key metric for fertilisation as a climate change mitigation effort is not
CO, drawdown

20
0 L . .
Compilation of air-sea CO, difference

£ before vs after artificial iron fertilisation
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Yoon et al. (2018)

aOlIF experiments



Sequestration efficiency

e Effectiveness of iron fertilization depends on C fixed reaching at least
~ 1000 m depth

e Can be defined by the “sequestration ratio” (C sequestered:Fe added)

e Kerguelen: 70,000 — 668,000 mol mol™ [Blain et al., 2007]
e Crozet: 8,600 mol mol [Pollard et al. 2009]

e Artificial iron fertilisation: 4,300 mol mol-, again noting that only 1
experiment demonstrated an increase in deep C flux [Yoon et al.,
2018]



Sequestration efficiency

 Artificial iron fertilisation results in far lower sequestration efficiency
than natural iron fertilisation. Why?

e Slow and continuous input of iron during natural fertilisation. Local
ecosystem “primed” for iron input.

e Artificial fertilisation with large amounts of iron within a short period
leads to the loss of ~ 80—-95% of the added iron [Blain et al. 2009]

e Possibly, local ecosystem is unable to respond to sudden,
“unexpected” input of iron



Timescales of sequestration

 Model analysis of water mass trajectories over a 100 year simulation

e For a sequestration depth of 1000 m, 66% of the carbon was re-
exposed to the atmosphere in 100 years (average 37.8 years)
[Robinson et al. 2014]

Efficiency [%]

_90 1 1 1 1 I 1 1
-180 -135 90 45 0 45 90 135 180



In situ experiments are inconclusive. What do
models say?

Carbon export enhanced 2x with
continuous simultaneous application of
iron to entire Southern Ocean

,‘  |ncrease is largest in first year of
e e T T fertilisation, but less thereafter
Fig. 1. Ratio of the particulate carbon export across z=125m sumu- . . . .
lated by the fertilization experiment in year 2011 (first year of fer- ¢ Beca use macron ut e nt | Im |tat Jolp!
tilization) and the control experiment in the same year. . . .
kicks in and previously sequestered

C returns to the surface

Oschlies et al. 2010
Biogeosciences; Keller et al.,
2014, Nat Comms



Earth system feedbacks of fertilisation

* Fertilization-induced atmospheric CO2 -
drawdown is initially opposed by a net loss of Atmosphere
carbon from land

* But subsequently countered by decreasing m m

fertilisation-induced sequestration efficiency Keller et al., 2018
and increased terrestrial uptake

e Carbonate counter pump may also reduce

fertilisation-induced C sequestration [Salter et
al., 2014]



Macronutrient fertilisation

 Macronutrient fertilisation (e.g., nitrate) has also been proposed

* Up to 15% of annual global CO2 emissions could theoretically be
offset [Harrison, 2017]

e |f continuous, simultaneous fertilisation of all N+P limited regions

* Also more expensive than iron fertilisation, because of the much
greater quantities of nutrients required [Williamson and Turley, 2012]



Summary

* Low sequestration efficiency of additional C fixed by nutrient
fertilisation, plus ocean circulation, limits the potential for long term
storage of CO,

e Comments from IPCC SROCC on ocean fertilisation as a CDR:

 Meagre efficiency, widespread impacts on ecosystems, short-lived climatic
benefits, low public and political acceptability

e “Because of the many technical, environmental and governance
issues relating to marine productivity enhancement...there is low
confidence that such open ocean manipulations provide a viable
mitigation measure” IPCC SROCC conclusion 2019

e IPCC AR6 2021 comes to same conclusion



Research questions

* Understanding ecosystem impacts — mess with one part of
the ecosystem, what happens to the rest?

e Quantifying Earth system feedbacks — mess with one part of
the Earth’s carbon sink, what happens to the rest?
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Potential CO2 drawdown effect

a
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e Decreased productivity in unfertilised regions 21 Y ),
 Enhanced ocean acidification eSS suREeess T
* Increased production of N20 and CH4 T
] ] . A net primary productivity (3 Cm?d") [year 2100]
* Increased suboxic zone extent in fertilised areas Keller et al. (2014)

& shrinkage of suboxic zones outside fertilised areas

e Perturbation to marine ecosystems via reorganisation of community
structure, including possibly toxic algal blooms

e (Oschlies, 2009; Keller et al., 2014; Jin and Gruber, 2003; Lampitt et al., 2008; Oschlies et al.,
2010; Williamson et al., 2012; Cao and Caldeira, 2010; Oschlies, 2010)



Trade-offs and constraints

Benefits : : .
e Maximum potential effectiveness
, . , by 2100 in reducing climatic
& &’ &’ : . .
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IPCC SROCC (2019), Chapter 5



Public perception & governance

e Ocean fertilisation is currently banned under the London Protocol
(except for research purposes)

e Additional governance constraints in Southern Ocean



Role of modeling in assessing CDR by iron fertilization

Prof. Fei CHAI
University of Maine

Past (15-20 years ago) global model estimates and some issues

Local and regional physical and biogeochemical conditions are important
for iron fertilization experiments and CDR effectiveness

Mesoscale processes (eddies, fronts, vertical exchange, etc.), timing and
duration for fertilization experiments

Natural and artificial iron fertilization in the equatorial and North Pacific
Suggestions for future experiments and high-resolution modeling



The Global Biosphere

Ocean Colors: SeaWiFS .
High Nutrient Low Nutrient

Low Chlorophyll Low Chlorophyll

(LNLC)

(HNLC)
limited (3 8 s N limited
~ 30% of

~ 30% of

ocean surface ocean surface

217 million square kilometers (ocean surface: 361 X 0.6)
(land surface: 149 million square kilometers)



Past global model estimates of CDR for HNLC regions

Controls on ocean productivity and air-sea carbon flux: An adjoin

Globalizing results from ocean in situ iron fertilization studies 10¢
model sensitivity study
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Past global model estimates of CDR for HNLC regions
Over 100 years period:

Global cumulative ocean carbon uptake (air-sea flux)
due to iron fertilization is 20 to 200 GtC
0.2 to 2 GtC/year

Atmosphere CO, reduction is about 10 to 100 ppm
0.1 to 1 ppm/year

Raito of cumulative air-sea CO, flux to
export production (at ~100m) due to iron fertilization is

0.1 to 0.5

The efficiency of fertilization for CDR decreases as the
duration increases (due to respiration and other limiting factors)



Some issues with previous global model estimates

» Early version of global ocean general circulation models (GCMs) with coarse resolution (100 km)
» Inconsistency among models and often poor performance for the Southern Ocean
» Different designs and approaches to conduct model iron fertilization experiments

v' Upper ocean nutrient restoring for different regions and time scaling issues

v’ Increase phytoplankton growth rates to release iron limitation

v' Adding iron to the upper ocean (~50 to 100m)

v Large range of C:Fe ratio (10,000 to 100,000)

v’ Different fertilization periods and areas: one fertilization per year for the Southern Ocean,
continue fertilization for the Equatorial Pacific, for 1, 10, 50, and 100 years. Some selected areas
with different patch sizes or the entire Southern Ocean, etc.

» Using different atmospheric CO, values (pre-industrial, current condition, or future RCPs)
» Responses of non-fertilized areas are very different among models and approaches, mainly due to

nutrient and carbon transport processes, and downstream compensation effects



Regional Ocean Model System
(ROMS) for Pacific Ocean
10-km, 1991 to 2020

Carbon, Silicate, Nitrogen Ecosystem Model
CoSiNE, Chai et al. 2002
Micro-

Zooplankton
[Z1]

Air-Sea
Exchange

Excretion

Meso-
zooplankton
Z2]

Fecal
Advaction

[Si(OH),]

Detritus-Si
[DSi]

Sinking

Chai et al., 1996

Carbon, Silicate, Nitrogen
Ecosystem Model (CoSiNE)

(Chai et al., 2002, 2003, 2007, 2009; Fujii and Chai,
2007; Liu and Chai, 2009; Xiu and Chai, 2011, Palacz
et al., 2011, Xu et al., 2013, Xiu and Chai, 2013,
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Size of fertilization patch matters
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Enormous inter-model variability in the total Fe input. Even “well known”
sources are very variable Inter-model mean = 67+t67 Gmol Fe /year
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Reviews and syntheses: Ocean iron fertilization experiments — past,
present, and future looking to a future Korean Iron Fertilization
Experiment in the Southern Ocean (KIFES) project

Yoon et al., Biogeosciences, 2018
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