Sunscreen prevention of UV-induced skin cancer

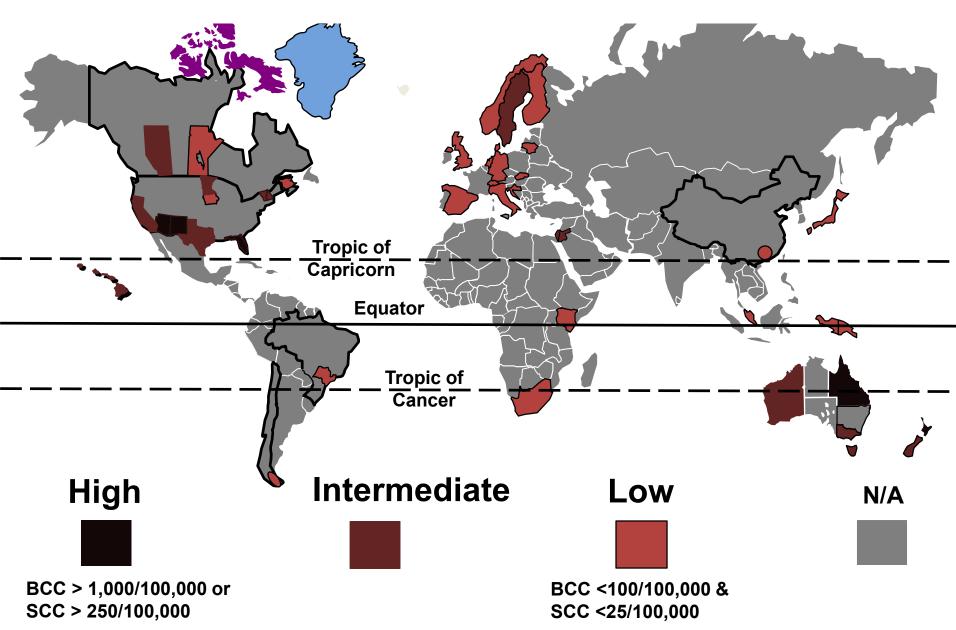
I: Contribution of UV radiation to skin cancer

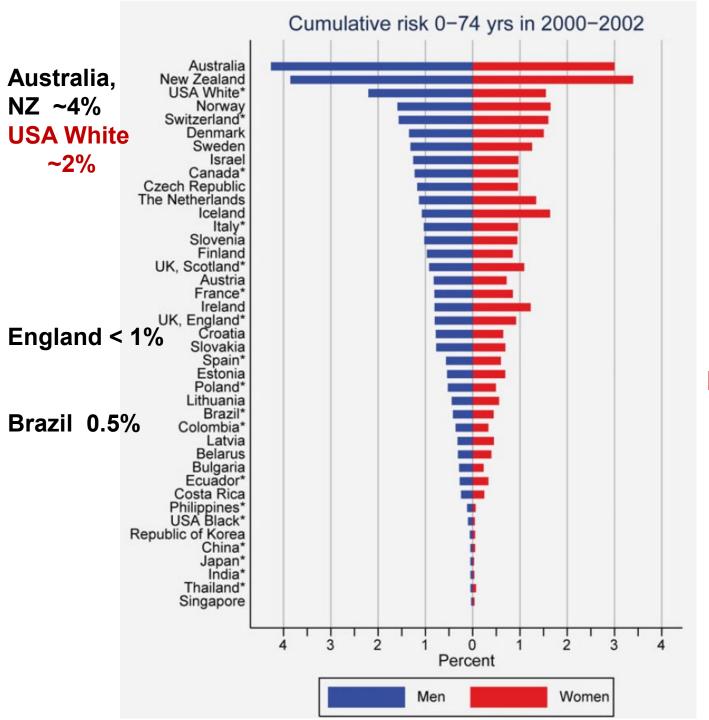
II: Evidence for skin cancer reduction by sunscreen

Keratinocyte cancers (KC) (formerly 'NMSC')

Basal cell carcinoma (BCC)

Squamous cell carcinoma(SCC)

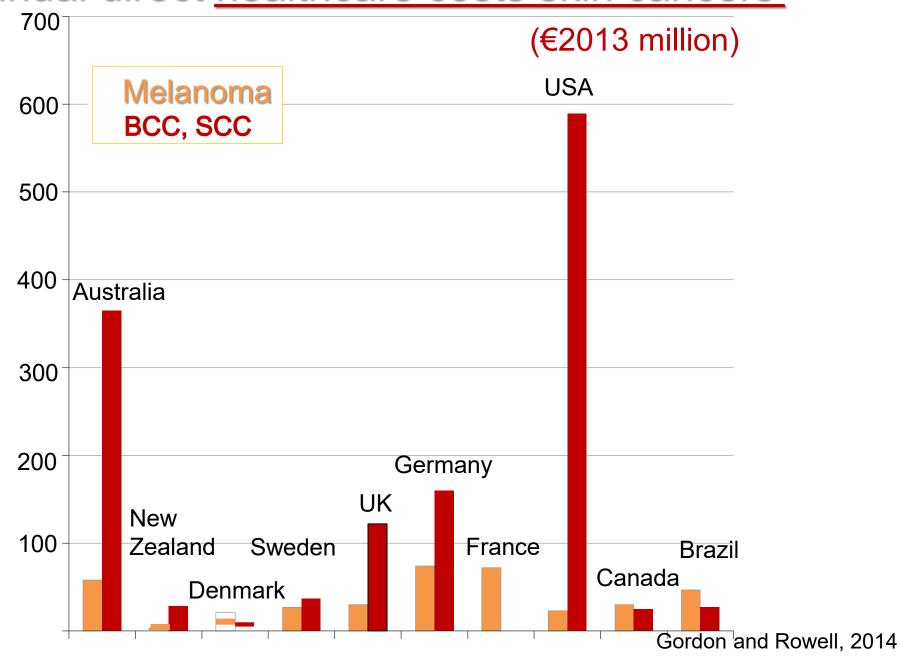



True global incidence rates unknown

- POOR REGISTRATION in many countries (none / selected subgroup)
- Often REGIONAL/LOCAL ESTIMATES only
- MULTIPLE PRIMARY KC a particular problem
 - o IARC/IACR : count only 1st tumour of defined histological type on skin

Keratinocyte cancer: Global incidence

Lomas et al, 2012


Melanoma

Lifetime Risk (<75 yrs) by country & sex

Erdmann et al, 2013

Annual direct healthcare costs skin cancers

What causes BCC, SCC, melanoma?

1. Ultraviolet (UV) radiation

- -High sun exposure
- -Indoor tanning devices (sunbeds)
- 2. Immunosuppression (+UV)
- 3. Ionising radiation (BCC)
- 4. Smoking; chronic inflammation; ?HPV (SCC)
- 5. ?Dietary and medications influence

UV radiation

- Shortest wavelength band of non-ionising EMF
 - -UVC 100- 280nm; UVB 280- 320nm; UVA 320-400 nm
- Solar UV radiation on earth's surface: 5% UVB, 95% UVA
- Biologically-effective solar UV on earth: 85% UVB, 15% UVA

UV is a Type I Carcinogen (IARC 2009) because skin cancer risk is increased:

- ✓ White-skinned vs dark-skinned
- ✓ High ambient UV vs low
- ✓ Tendency to sunburn with acute sun vs not to burn
- ✓ Multiple sunburns vs none
- ✓ Inherited UV 'sensitivity' (XP; albinism)
- ✓ Sun-exposed body sites vs non-exposed
- ✓ Actinic keratoses* present vs absent

Proportion of skin cancers attributable to solar UV radiation?

13.

Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010

DM Parkin*,1, D Mesher¹ and P Sasieni¹

Gentre for Cancer Preventian, Wolfran Institute of Preventive Medicine, Queen May University of London, Charterhouse Square, London ECI M 68Q, UK

British Journal of Concer (2011) 105, 566-569, doi:10.1038/tijc.2011.486 www.bijcancer.com © 2011 Cancer Research UK

Brit J Cancer 2011; 195: 566-569

Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use

Catherine M. Olsen,^{1,2} Louise F. Wilson,¹ Adele C. Green,^{1,2,3} Christopher J. Bain,^{1,4} Lin Fritschi,⁵ Rachel E. Neale,^{1,2} David C. Whiteman^{1,2}

UK:

86% of melanomas due to UV

Australia:

~100% of BCCs+SCCs

&

63% of melanomas

due to UV

Aust NZ J Public Health. 2015; 39:471-6;

Evidence re Sunscreen effectiveness in reducing UV-induced skin cancer

> Randomised Controlled Trials only

...To avoid "confounding by indication"

Predictors of sunscreen use (fair skin, outdoor activity)

=

Predictors of skin cancer (fair skin, outdoor activity)

Sunscreen use appears to be positively associated with skin cancer

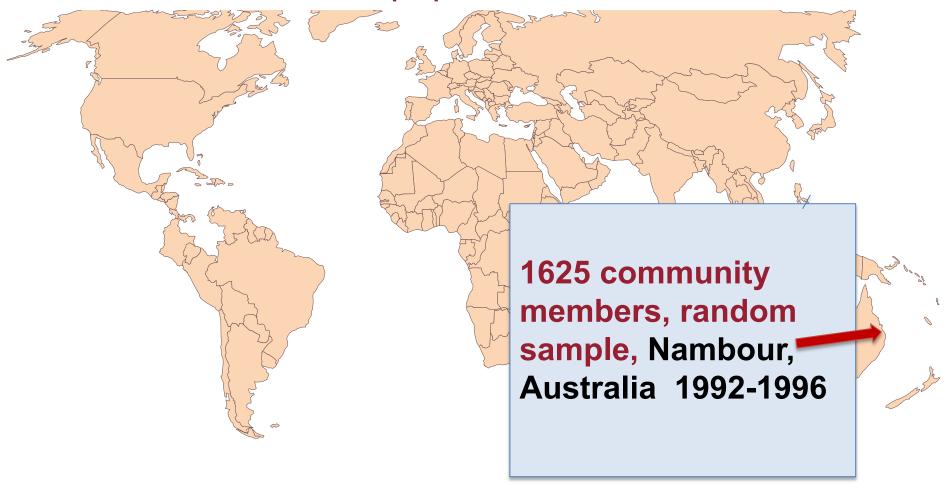
Green & Williams, 2014; Rueegg et al, 2019

Sunscreen use as a randomised intervention with skin cancer-related endpoints:

#1 of 3 population RCTs 588 community volunteers with actinic keratoses, Maryborough, **Australia 1991-1992**

Maryborough Actinic Keratosis Prevention Trial

- Randomised sunscreen intervention
 - broad-spectrum sunscreen SPF 17 vs base cream for 7 months (one Australian summer)
- Compliance
 - -80% applied sunscreen daily for at least 80% of period
 - 431 of 588 residents completed the trial


Results

- In sunscreen users vs placebo
 - 38% reduction in new AKs
 - 53% more remissions in existing AKs

Thompson et al, 1993

Sunscreen use as a randomised intervention with skin cancer-related endpoints:

#2 of 3 population RCTs

Nambour Skin Cancer Prevention Trial (1992-96)

Sunscreen arm

N=812 adults *randomly assigned*, supplied daily sunscreen

Control arm

N=809 adults randomly assigned no daily sunscreen

Average age 49 years; 56% women

Intervention sunscreen

- SPF 15+ broad spectrum
- applied to head, neck, arms and hands
- daily for 4.5 yrs

Compliance

 75% applied sunscreen at least 3-5 times/week

Supplied by Woolworths Ltd Australia & Ross Cosmetics Australia

Incidence of skin cancers on the head, neck, arms, hands by

<u> </u>	,,, .			
sunscreen treatment group	o, 1992-1996	1992-1996		
	TUMO	URS		
SKIN CANCER	Daily sunscreen	No daily sunscreen		

153

6092

1.05

28

1115

0.61

(0.46 - 0.81)

(0.82 - 1.34)

146

5814

1.00

46

1832

1.00

Green et al, 1999

BCC

Number

SCC

Number

Incidence per 100 000

Rate ratio (95%CI)

Incidence per 100 000

Rate ratio (95%CI)

Sunscreen use and *repeated new BCCs* during Nambour Trial (1992-1996)

Occurrence Rate in people with multiple BCCs

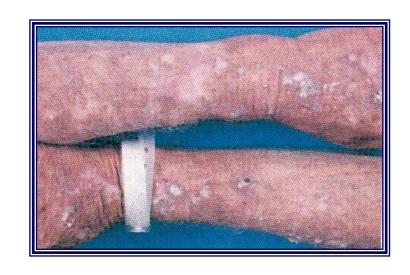
(95% CI)	
10 (08-14)	

 1^{st} occurrence 1.0 (0.8 - 1.4)

 2^{nd} occurrence 0.7 (0.4 - 1.2)

 3^{rd} occurrence 0.6 (0.3 – 1.3)

Regular sunscreen and actinic keratoses


Ratio AK counts 1994 vs 1992

Sunscreen group:

1.20 (95% CI 1.04- 1.39)

Discretionary sunscreen group:

1.57 (95% CI 1.35- 1.84)

Sunscreen group: 24% reduction

in rate of increase in new AKs

Sunscreens, melanoma and naevi

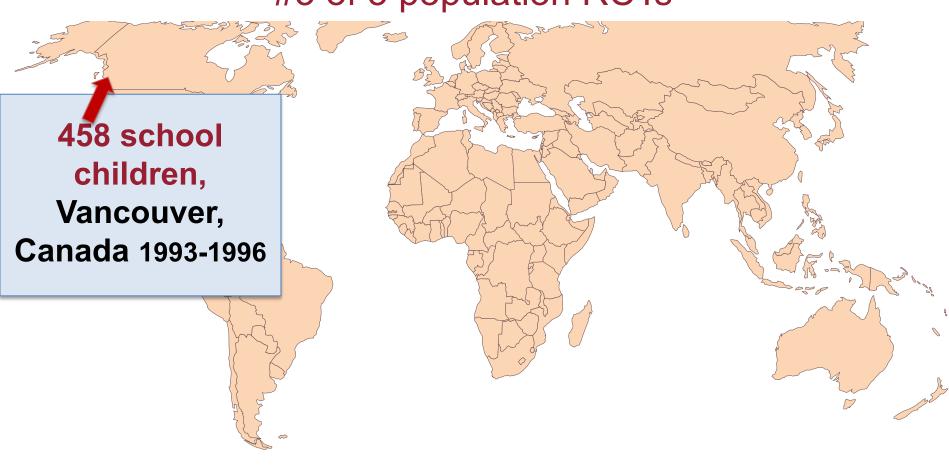
First primary melanoma

by sunscreen intervention

	No. of Participants Affected				
		No	Analysis		
Melanoma by Level		Sunscreen $(n = 809)$	Hazard Ratio	95% CI	P*
All	11	22	0.50	0.24 to 1.02	.051
I: in situ	8	11	0.73	0.29 to 1.81	.493
Invasive	3	11	0.27	0.08 to 0.97	.045
II: in papillary dermis	3	4			
III: filling papillary dermis	0	1			
IV: reticular dermis	0	5			

Cancers in Australia attributable to exposure to olar ultraviolet radiation and prevented by egular sunscreen use

otherine M. Olsen,^{1,2} Louise F. Wilson,¹ Adele C. Green,^{1,2,3} Christopher J. Bain,^{1,4} Lin Fritschi,⁵ Rachel E. Neale,^{1,2} avid C. Whiteman^{1,2}


Aust NZ J Public Health. 2015; 39:471-6;

~10-15% skin cancers in Australia in 2008 were prevented by sunscreen use

Sunscreen use as a randomised intervention with skin cancer-related endpoints:

#3 of 3 population RCTs

Vancouver Naevus Prevention Trial

- Randomised sunscreen intervention
 - broad-spectrum sunscreen SPF 30 *vs* no sunscreen when in sun >30 mins, for 3 years
- Compliance

-not measured

- Results
 - Fewer new naevi in sunscreen (median = 24)
 - vs control group (median = 28), p<0.05

Summary RCTs of regular sunscreen use:

skin cancer (and related lesions) as outcome

- Long-term effectiveness
 - > Reduced AK, SCC, melanoma, naevi
 - ➤ No significant effect on BCC overall
 - Decreased multiple BCCs

References

Cited

- S. Darlington et al, A randomized controlled trial to assess sunscreen application [...] in the prevention of solar keratosis, *Arch. Dermatol.*, **139**, 451–455 (2003).
- F Erdmann et al. International trends in the incidence of malignant melanoma 1953–2008—are recent generations at higher or lower risk? *Int. J. Cancer* **132**, 385–400 (2013)
- A. Green et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial, *Lancet*, **354**, 723–729 (1999).
- L Gordon, D Rowell. Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: a systematic review. Eur Journal Cancer Prevention (2014)
- A C. Green et al. Reduced melanoma after regular sunscreen use: randomized trial follow-up, *J. Clin. Oncol.*, **29**, 257–263 (2011).
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, volume 55: Solar and Ultraviolet Radiation. Lyon, France, IARC, 1992
- TK Lee et al, Site-specific protective effect of broad-spectrum sunscreen on nevus development in white schoolchildren in randomized trial, *J Am Acad Derm*, **52**, 786–792 (2005).
- A. Lomas et al, A systematic review of worldwide incidence of nonmelanoma skin cancer, *Br J Dermatol*, **166**, 1069-80 (2012)
- N Pandeya et al. Repeated occurrences of basal cell carcinoma of the skin and multi-failure survival analysis: follow-up data from the Nambour Skin Cancer Prevention Trial, *Am. J. Epidemiol.*, **161**, 748–754 (2005).
- D Parkin et al, Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Brit J Cancer 105, S66- (2011)
- C. S. Rueegg et al. Challenges in assessing the sunscreen melanoma association, *Int. J. Canc.*, **144**, 2651–2668 (2019).

Other relevant

- A. C. Green, G. M. Williams, Sunscreen use is a safe and effective approach to skin cancer prevention, *Cancer Epidemiol. Biomark. Prev.*, **16**, 1921–1922 (2007).
- A. C. Green et al, "Epidemiology of cancer of the skin," in A Textbook of Cancer Epidemiology and Control, 3rd Ed., A. Adami, A. Trichopoulos, and D. Hunter. Eds. (Oxford University Press, New York, NY, 2018), pp. 355–381.
- A. C. Green, Epidemiology of actinic keratosis, *Curr. Probl. Dermatol.*, **46**, 1–7 (2015).
- A. C. Green Regular Application of Sunscreen Can Prevent Skin Cancer J. Cosmet. Sci., 71, 191–196 (2020)
- M. Janda and A. C. Green, "Primary prevention of skin cancer", in *Evidence-Based Dermatology*, 3rd Ed.,H. Williams, M. Bigby, A. Herxheimer, L. Naldi, B. Rzany, R. Dellaville, Y. Ran, and F. Furue. Eds. (Wiley-Blackwell, Hoboken, NJ, 2014), pp. 223–230.
- A. R. Lindstrom et al, Regular sunscreen use and risk of mortality: long-term follow-up of a skin cancer prevention trial, *Am. J. Prev. Med.*, **56**, 742–746 (2019).
- C. M. Olsen et al, Prevention of DNA damage in human skin by topical sunscreens, *Photodermatol. Photoimmunol. Photomed.*, **33**, 135–142 (2017).
- J. C. van der Pols, et al, Prolonged prevention of squamous cell carcinoma of the skin with regular sunscreen use, *Cancer Epidemiol. Biomark. Pre.*, **15**, 2546–2548 (2006).
- J. C. van der Pols et al, Long-term increase in sunscreen use in an Australian community after a skin cancer prevention trial, *Prev. Med.*, **42**, 171–176
- R. Neale et al, Application patterns among participants randomized to daily sunscreen use in a skin cancer prevention trial, *Arch. Dermatol.*, **138**, 1319–1325 (2002).

S. C.Thompson et al, Reduction of solar keratoses by regular sunscreen use, *N.Engl. J. Med.*, **329**, 1147–1151 (1993).