An assessment of exposure to benzophenones from cosmetics and potential health implications

Kurunthachalam Kannan

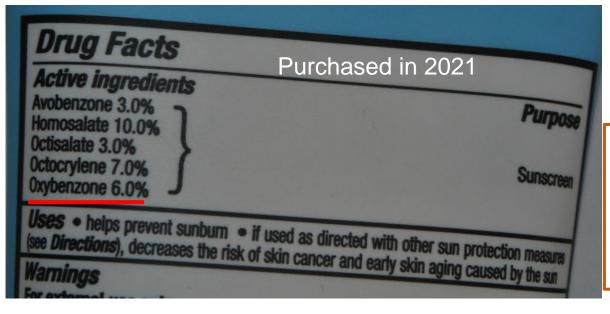
Department of Pediatrics, New York University School of Medicine, New York

What is in sunscreen products?

Common UV filters in cosmetics

	Generic name	Product name	Max concentration (%)	Spectrum of action	Approved
Chemical UV-filters	Benzophenone-3	BP-3	6 ^b -10 ^{a,c}	UV-A, UV-B	EU, US, AU
	2-Cyano-3,3-diphenyl acrylic acid	OCT	10	UV-B	EU, US, AU
	3-Benzylidene camphor	3-BC	2	UV-B	EU
	3-(4-Methyl-benzylidene) camphor	4-MBC	4	UV-B	EU, AU
	2-Ethylhexyl 4-methoxy cinnamate	OMC	7.5 ^b –10 ^{a,c}	UV-B	EU, US, AU
	Homosalate	HMS	10 ^a –15 ^{b,c}	UV-B	EU, US, AU
	2-Ethylhexyl 4-dimethylaminobenzoate	OD-PABA	8	UV-B	EU, US, AU
	4-Aminobenzoic acid	PABA	15 ^{b,c}	UV-B	US, AU
Physical UV-filter	Titanium dioxide		25	Physical	EU, US, AU
-	Zinc oxide		25-no limit	Physical	US, AU

^aList of permitted UV-filters in the Council Directive of the European Committee.


- Organic (chemical) and inorganic (physical) UV filters
- FDA regulates them as OTC drugs; EU, AU as a cosmetic

^bList of permitted UV-filters in the US Food and Drug Administration monograph.

List of permitted UV-filters in the Australian regulatory guidelines for over-the-counter medicines (ARGOM), by the therapeutic Goods Administration.

Sunscreen products – active and inactive ingredients

- Active (20-30%) and inactive ingredients (50-60%; formulation stabilizers) and sensory enhancers (15-35%)
- 16 active ingredients approved by the FDA; 8 commonly used – avobenzene, homosalate, octisalate, octinoxate, octocrylene, oxybenzone, TiO2 and ZnO

BROAD SPECTRUM SPF 50 SUNSCREEN UVA/UVB

OXYBENZONE FF

PARABEN FREE

FRESH SCENT

· Won't run int

Insufficient safety data

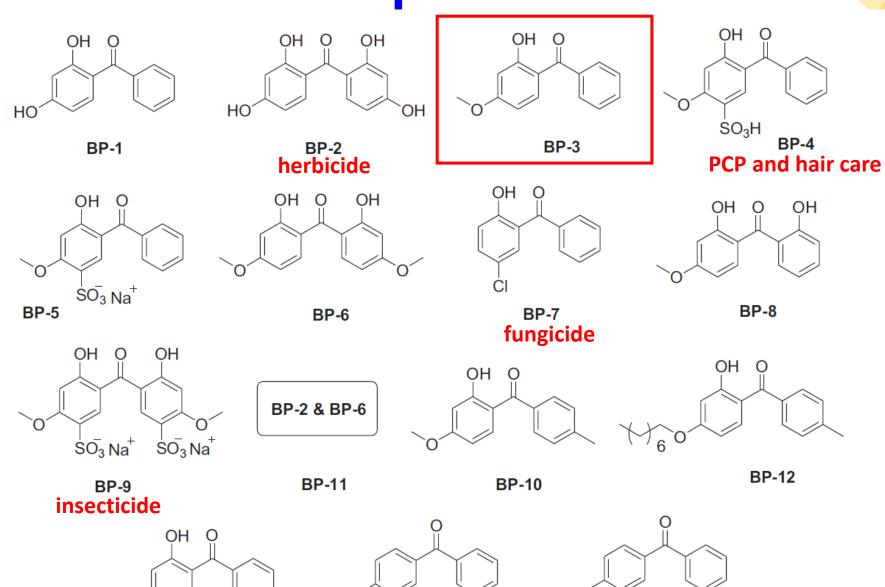
Mixture of more than 1 UV filters

pparty, No U/981

gredients

a 3%, Homosalate 13%, Octisalate 5%, ne 10%, Oxybenzone 6%

■ helps prevent sunburn


Generally recognized as safe

ium Dioxide 3.0%, Zinc Oxide 6.1

Benzophenone-3 (BP-3) or Oxybenzone or 2-Hydroxy-4-methoxy benzophenone

- UV radiation filter used in sunscreen, cosmetics, plastics and printing inks.
- Used in ¾ of the sunscreens marketed in the US in 2010s.
- 2016 UV filters usage: 28,000 tons of each of 5 organic filters, octinoxate 8600 tons;
 5000 tons each of ZnO and TiO₂.
- Estrogenic and anti-androgenic higher than BPA; 1000-100000 times lower than EE2

Benzophenones

4-OH BP

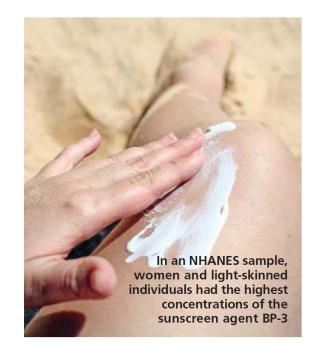
2-OH BP

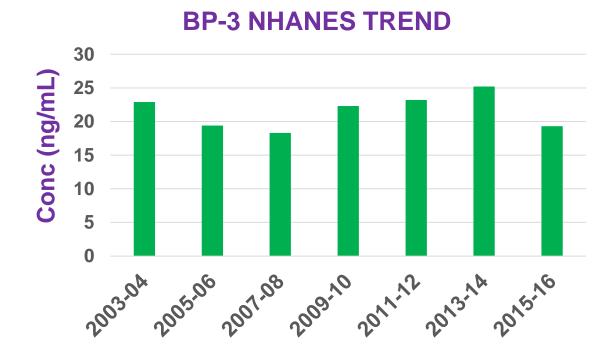
4-Me BP

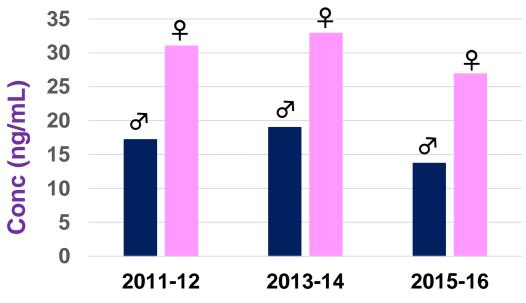
Parent

chemicals

Metabolites


Environmental Health Perspectives • VOLUME 116 | NUMBER 7 | July 2008


Concentrations of the Sunscreen Agent Benzophenone-3 in Residents of the United States: National Health and Nutrition Examination Survey 2003–2004


Antonia M. Calafat, Lee-Yang Wong, Xiaoyun Ye, John A. Reidy, and Larry L. Needham

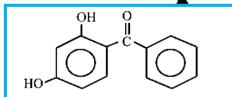
Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

- The National Health and Nutrition Examination Survey (NHANES) in 2015-16 urinary geomean concentration: 19.3 μg/L (or ng/mL)
- 95th percentile 930 μg/L.

Data from CDC – NHAHES reports Picture from EHP Vol 116, 2008, Page A306

Analysis of five benzophenone-type UV filters in human urine by liquid chromatography-tandem mass spectrometry

Tatsuya Kunisue, Qian Wu, Shinsuke Tanabe, Kenneth M. Aldous and Kurunthachalam Kannan *ac


Received 23rd December 2009, Accepted 15th March 2010

- BP-3 metabolized to BP-1 and BP-8 and several other BPs; metabolites are more estrogenic
- Challenges in acquiring analytical standards, for metabolites
- Many other BPs remain not analyzed
- Studies reported skin penetration, as high as 20%; systemic absorption substantial. 1.2-8.7% excreted in urine

Analysis of 5 BPs

2-hydroxy-4-methoxybenzophenone (2OH-4MeO-BP, BP-3)

demethylation

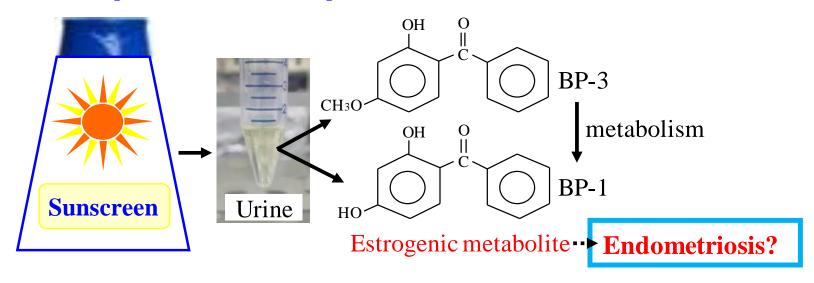
2,4-dihydroxybenzophenone (2,40H-BP, BP-1)

2,2',4,4'-tetrahydroxybenzophenone (2,2',4,4'OH-BP, BP-2)

2,3,4-trihydroxybenzophenone (THB)

2,2'-dihydroxy-4-methoxybenzophenone (2,2'OH-4MeO-BP, BP-8)

4-hydroxybenzophenone (40H-BP)



pubs.acs.org/est

Urinary Concentrations of Benzophenone-type UV Filters in U.S. Women and Their Association with Endometriosis

Tatsuya Kunisue,[†] Zhen Chen,[‡] Germaine M. Buck Louis,[‡] Rajeshwari Sundaram,[‡] Mary L. Hediger,[‡] Liping Sun,[‡] and Kurunthachalam Kannan^{†,§,}*

Benzophenone Exposure and Endometriosis

Showed the presence of benzophenones other than BP-3, in urine for the first time

BP-1 concentrationswere similar to those of BP-3

BP-1 associated with endometriosis

Exposure to high levels of 2,4OH-BP (BP-1) was associated with endometriosis in women in an epidemiological study involving 600 women

Exposure in children

Environmental ——
Science & Technology

pubs.acs.org/est

Article

Characteristic Profiles of Benzonphenone-3 and its Derivatives in Urine of Children and Adults from the United States and China

Lei Wang^{†,‡} and Kurunthachalam Kannan*,[†]

	BP-3	BP-3		BP derivatives in total forms				
Conc	in total	in free		4-OH-	2,4-diOH-	2,2',4,4'-	2,2'-diOH-	
(ng/mL)	forms	form		BP	BP	tetraOH-	4-MeO-	
					(BP-1)	BP (BP-2)	BP (BP-8)	
Albany, NY, children (n=38)								
GM ^a	9.97	0.290		0.913	4.21	0.238	0.258	
Median	8.34	0.181		0.768	6.547	0.141	0.217	
DR % b	97	76		100	87	29	68	
Albany, NY, adults (n=30)								
GM	15.7	1.04		0.330	4.37	0.289	0.161	
Median	16.7	0.986		0.425	5.97	0.231	0.148	
DR %	100	73		93	100	60	53	

Children (3-10 years) and adults (15-66 years) from Albany, NY, 2011-2012.

BP-3 in conjugated form

BP-3 levels in Albany children were lower than those in adults, but BP-1 levels were similar.

Concentrations of BP-3 were significantly correlated with other BP derivatives.

Excerpts from Human Biomonitoring Studies

- Urinary concentrations of BPs were approximately an order of magnitude higher than those in serum (Zhang/Kannan et al. 2013).
- BPs can cross placental barrier; cord serum levels were similar to maternal serum levels; found in amniotic fluid (Song/Kannan et al. 2020).
- BP-1 and BP-3 were found in seminal plasma (median: 0.35 and 1.42 ng/mL, respectively) (Buck Louis et al. 2018).
- BP-3 was found in human adipose tissue at conc as high as 4940 ng/g wet wt (dermal application) (Wang/Kannan 2015).
- BP-3 was measured in breast tissue at concentrations as high as 26 ng/g (Barr et al. 2018).
- BP was found in U.S. breast milk at median concentrations of 9 ng/mL (Liu and Mabury 2019) and BP-3 at <LOD-10 ng/mL (Hines et al. 2015). Infant exposure = 9 ng/mL X 750 mL/d = 6750 ng/d or 1125 ng/kg bw/d (for a bw of 6 kg)

pubs.acs.org/est

BP-3 in personal care products

Widespread Occurrence of Benzophenone-Type UV Light Filters in Personal Care Products from China and the United States: An Assessment of Human Exposure

Chunyang Liao[†] and Kurunthachalam Kannan*,^{†,‡}

PCP category (ng/g)	n	GM	median	Range
Toothpaste	5	71	140	<1-785
Hair care (shampoo/conditioner)	15	115	73	2.4-6800
Body wash (shower and facial cleanser)	16	286	439	5.2-8200
Sanitary products (odor eliminator)	2	25500	33800	11600-56000
Skin lotions (body/skin lotion, deodorant, sunscreen, eye cream and face cream)	64	3000	1100	11-1285000
Makeup products (liquid foundation, nail polish, lip cream, fragrance)	12	2300	4600	34-815000

114 products, Albany, NY; purchased in 2012-2013; MTBE extraction, LC-MS/MS analysis

Sunscreens 100000 to 1280000 ng/g

Highest levels (ng/g)

Makeup cream: 800000

Deodorant: 37000

Lipstick: 180

Eye cream: 7000

Shampoo: 6800

Toothpaste: 700

Dermal exposure dose (ng/d) to BP-3 from PCPs

(adult females)

Median exposure dose: 24.4 µg/d

For a person weighing 70 kg= 349 ng/kg bw/d

Skin lotions and face creams accounted for >80% of total exposures

Uncertainties exist (likely an underestimate)

Category	Daily usage (g/day)	Retention factor	GM (ng/d)	95th percentile
Shampoo	12.8	0.01	25.6	586
Hair conditioners	13.8	0.01	6.96	36.9
Body shower	14.5	0.001	1.30	9.55
Facial cleanser	4.06	0.001	1.97	30.4
Toilet soaps (China)	4.80	0.01	6.32	37.8
Body lotions	8.69	1.00	18100	4400000
Face creams	2.05	1.00	2200	54700
Liquid foundations	0.67	1.00	4060	705000
Total dose			24400	5160000

Liao and Kannan, 2014

Relative Contribution of PCPs to BP-3 Exposure

Total Daily Exposure Dose (extrapolated from urinary concentrations) =

Median concentration in urine (µg/L) x daily urine excretion rate (L/d)

30.7 (μ g/L) X 1.5 (L/d) = 46.1 μ g/d (70 kg: 659 ng/kg bw/d)

Median exposure dose to BP-3 from PCPs = $24.4 \mu g/d$ (for adult females)

Contribution of PCP to exposure = 24.4/46.1 X 100 = 53%

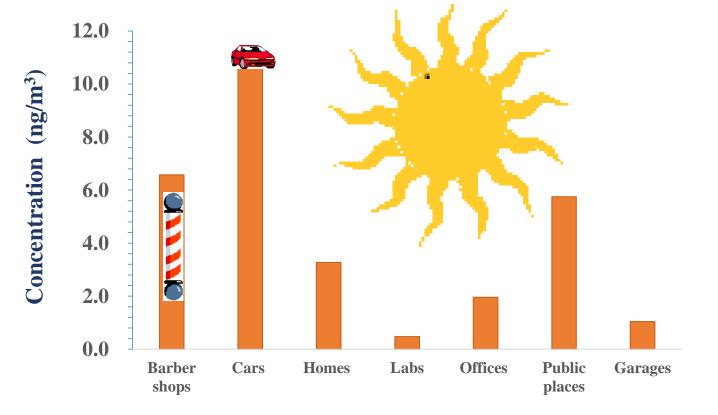
BP-3 exposure from sunscreen usage – A day at the beach

• Median concentration of BP-3 found in 15 sunscreen products = 893000 ng/g or 893 μ g/g or 0.893 mg/g (Liao and Kannan, 2014)

- 1 full day at beach, 3 oz (85 g) used (3 applications in 6 h at 1 oz every 2 h) = 76 mg BP-3 exposure
- For a person weighing 75 kg = 1.0 mg/kg bw/d at beach
- At 10% absorption = 0.1 mg/kg bw/d or 100 μ g/kg bw/d (for BP-3).
- EFSA TDI for BP is 30 μg/kg bw/d.

Contents lists available at ScienceDirect

Science of the Total Environment

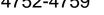


Occurrence of benzophenone-3 in indoor air from Albany, New York, USA, and its implications for inhalation exposure

Yanjian Wan ^{a,b}, Jingchuan Xue ^a, Kurunthachalam Kannan ^{a,c,*}

BP-3 in indoor air and inhalation exposure

81 indoor air samples from Albany, NY, in 2014


BP-3 measured at 0.19-72 ng/m³, highest in cars (GM: 2.67 ng/m³)

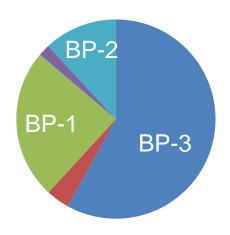
Other BPs were not found.

Cars > saloons > malls > homes > offices > garages

Median Inh exposure: 36.5 ng/d (adults); minor pathway

Article

pubs.acs.org/est


Benzotriazole, Benzothiazole, and Benzophenone Compounds in Indoor Dust from the United States and East Asian Countries

Lei Wang,^{†,‡} Alexandros G. Asimakopoulos,[†] Hyo-Bang Moon,[§] Haruhiko Nakata,^{||} and Kurunthachalam Kannan[†],*

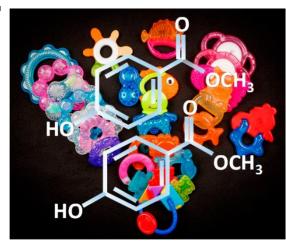
ng/g	BP-3	40H- BP	BP-1	BP-8	BP-2	ΣBPs
Median	243	15.8	102	8.0	49.8	612
Range	65-1190	3.5-689	3.7-36400	<1-56	<1-1230	121-37400

40 house dust, Albany, NY, 2006-2010.

Median concentrations: 612 ng/g; BP-3 and BP-1 - 60% of the total. Median dust ingestion exposure to BP-3: Adults 20 ng/d (MINOR)

BP-3: Other sources of exposure

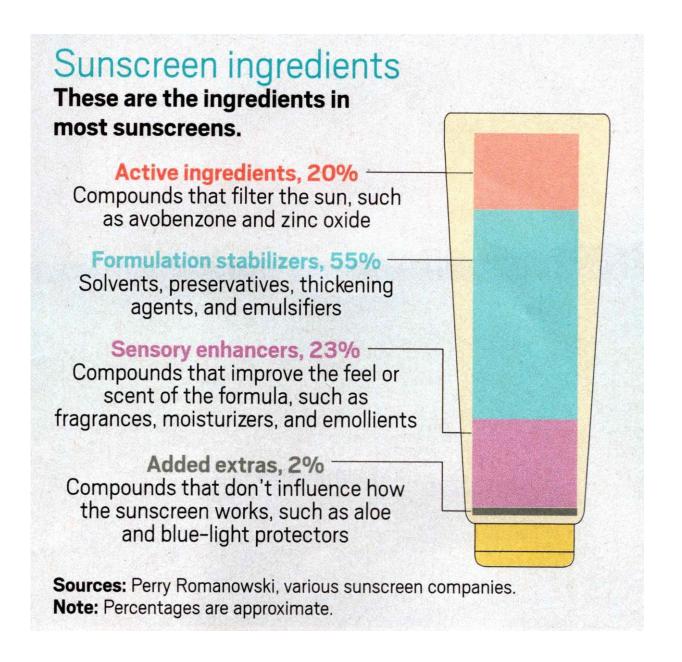
Clothing – reported in infant clothing (median conc: 5.9 ng/g [<2-157]), Minor contributor


Pantyhose – median: 205 ng/g [3.5-2410000]), Minor contributor

Infant teethers – median amount leached 5.4 ng [0.59-297 ng]), 2 h of extraction in water and meOH.

DIET, NOT KNOWN, BUT SEAFOOD HAS BEEN SHOWN TO CONTAIN BP-3 (oyster from Chesapeake Bay – 118 ng/g max)

Besides BP-3 other BPs were found in textiles, teether



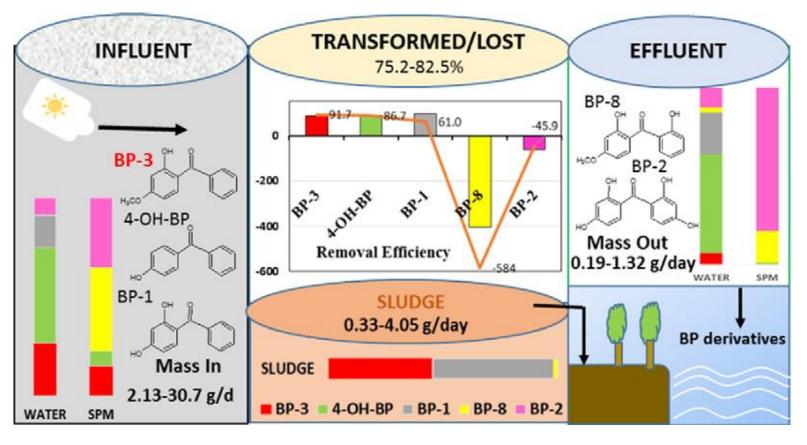
Summary

- Cosmetics and personal care products are the major sources of daily exposure to BP-3 in the general population.
- Indoor air, dust ingestion and textiles are minor sources of exposure to BP-3 (<5% of the total dose).
- Studies describing occurrence of other BPs (BP-1, BP-2, BP-4 etc) in cosmetics are not available.
- Contribution of diet to total BP exposures is not known.
- Daily BP-3 exposure doses from cosmetics and PCPs are 10-100 times below the tentative reference value (TDI) suggested by the EFSA.
- BP exposure dose from sunscreen use on a beach day can exceed the EFSA reference value.

Thank you

Contents lists available at ScienceDirect

Science of the Total Environment



journal homepage: www.elsevier.com/locate/scitotenv

Mass loading and emission of benzophenone-3 (BP-3) and its derivatives in wastewater treatment plants in New York State, USA

Wei Wang a, Kurunthachalam Kannan a,b,*

- Mass loading and fate of benzophenone UV filters were studied in two WWTPs.
- Sorption to sludge accounted for 13.2– 15.7% of ΣBPs' mass reduction
- A negative removal efficiency was found for BP-8 and BP-2
- The mass loading of ΣBPs in WWTPs was ~102–276 mg/d/1000 people
- ~55–94 mg/d/1000 people of ΣBPs was discharged into the environment from WWTPs.