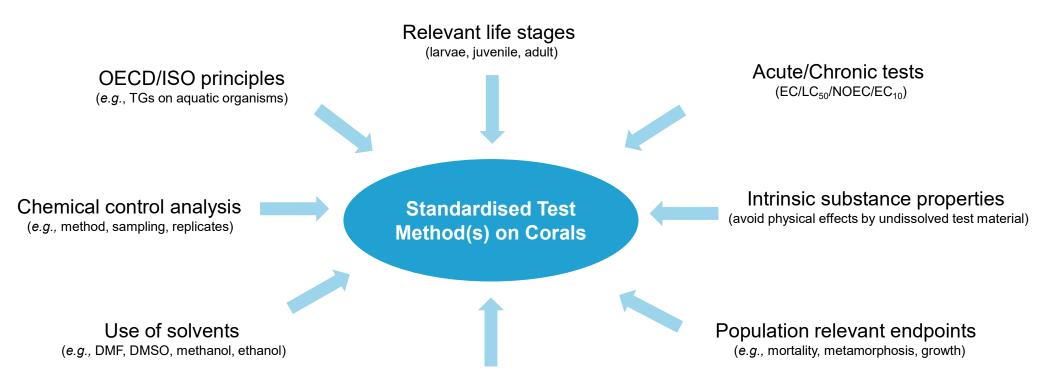


Standardisation of Toxicity Tests on Corals to Meet Regulatory Requirements


Dr. Sascha Pawlowski & Laura H. Lütjens

NASEM Workshop to Advance Research on Understanding Environmental Effects of UV Filters in Sunscreens Washington DC, USA January 23-24, 2023

©University of Oldenburg

Key Aspects to be Considered for Standardised Tests on Corals

Water source and quality, light conditions (e.g., artificial *versus* natural, pH, temp., NO₂, NO₃, NH₄)

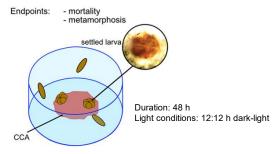
Our Work (in collaboration with University of Oldenburg, Germany)

- Acute toxicity test on adult coral fragments (lower Tier)

- Toxicity test on coral larvae (higher Tier) 📞
- Effects of solvents* on corals
- Further chronic toxicity test on coral fragments in progress
- Bioaccumulation in corals planned

Standardized test methods on corals following ISO/OECD TG principles

It's a long way to go.....(5 - 10 years)


Acute coral fragment test

©University of Oldenburg

Coral larvae toxicity test

Settlement experiment

©University of Oldenburg

*DMF, DMSO, ethanol, methanol,

Current Safety Assessment Approach for Corals

EU REACH requires PNECs for hazardous UV filters

PNEC_{marine water} are based on standard freshwater organisms (A, D, F) and Assessment Factors

PNEC_{marine water} versus effect values on corals (literature)

- All effect levels in corals (acute, marine water) refer to already classified UV filters
- All acute effect levels in corals were above the derived PNEC_{marine water}
 - PNEC_{marine water} as derived within EU REACH could be used as a surrogate to protect corals until standardized methods become available

Received: 2 December 2020 Returned for Revision: 15 February 2021 Accepted: 13 May 2021

Special Series

UV filters used in sunscreens—A lack in current coral protection?

Sascha Pawlowski, Mareen Moeller, Ingo B. Miller, Matthias Y. Kellermann, Peter J. Schupp, 2,3 and Mechtild Petersen-Thiery

UV filter		Molecular	Water		GHS	Freshwater		Marine water		Minimum	
INCI name (abbreviation)	CAS No.	weight (g/mol)	solubility (µg/L)	Log Pow	classification environment	Effect level	Value (µg/L)	AF	PNEC _{martes} water (µg/L) ¹	coral toxicity (mg/L)	Reference
4-Methyl benzylidene camphor (4MBC)	36861-47-9	254.38	1.1 × 10 ³	5.1	Aquatic acute 1, Aquatic chronic 1	NOEC	20	500	0.04	37×10 ^{3 h}	Danovaro et al. (2008)
Benzophenone-3 (BP3)	131-57-7	228.25	6 × 10 ³	3.45	Aquatic acute 1, Aquatic dironic 2	EC50	670	10 000	0.067	17	Downs et al. (2016)
Benzophenone-4 (BP4)	4065-45-6	308.31	3 × 10 ⁸	0.515	Not classified	NOEC	4897	500	9.79	>1000	He et al. (2019)
Bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT)	187393-00-6	627.83	4.5 × 10 ⁻³	>5.7	Not classified	NOEC	≥WS	N/A	No hazard identified	>1000°	Stien et al. (2019)
Diethylhexyl butamido triazone (DBT)	154702-15-5	766.00	<0'	4.12	Not classified	NOEC	≥WS	N/A	No hazard identified	>1000	Stien et al. (2019)
Ethylhexyl triazone (EHT)	88122-99-0	823.10	<1	7	Not classified	NOEC	≥W\$	N/A	No hazard identified	>177°	Fel et al. (2019)
Terephtalidene dicamphor sulfonic acid (TDSA)	92761-26-7	562.70	≥6×10 ⁸	-1.84	Not classified	NOEC	No hazard iden- tified	N/A	No hazard identified	>5030	Fel et al. (2019)
Drometrizole trisiloxane (DTS)	155633-54-8	501.85	No data	>4	No data	No data	No data	No data	No data	>480	Fel et al. (2019)
Butyl methoxy dibenzoyl methane (BMDBM)	70356-09-1	310.40	27	6.1	Not classified	NOEC	≥WS	N/A	No hazard identified	516°	Fel et al. (2019)
Ethylhexylmethoxy circnamate (EHMC)	83834-59-7	290.41	51	>6	Aquatic chronic 2	NOEC	<46.9	100	<0.469	10	He et al. (2019)
Ethylhexyl salicylate (EHS)	118-60-5	250.34	500	6.36	Not classified	NOEC	≥WS	N/A	No hazard identified	>1000	Stien et al. (2019)
Homomenthyl salicylate (HMS)	118-56-9	262.35	400	6.34	Not classified	NOEC	≥WS	N/A	No hazard identified	>1000	Stien et al. (2019)
Methylene bis- benzotriazolyl tetramethyl butylphenol (MBBT)	103597-45-1	658.89	<5 x 10 ⁻³	12.7	Aquatic chronic 4	NOEC	≥WS	N/A	No hazard identified	>1000	Stien et al. (2019)
UV filter		Molecular	Water solubility (µg/L)	Log Pow	GHS classification environment	Freshwater		Marine water		Minimum	
INCI name (abbreviation)	CAS No.	Weight (g/mol)				Effect level	Value (µg/L)	AF	PNEC_motor water (µg/L) [†]	coral toxicity (mg/L)	Reference
Octocrylene (OCR)	6197-30-4	361.49	40	6.1	Aquatic chronic 1	NOEC	2.7	100	0.027	1318 ^b	Fel et al. (2019)
Titanium dioxide (TiO ₂)	13463-67-7	79.87	100	N/A	Not classified	NOEC	>WS	N/A	No hazard identified	>6300	Corinaldesi et al. (2018)
Zinc oxide (ZnO)	1314-13-2	81.39	2.9×10 ³	N/A	Aquatic acute 1 Aquatic chronic 1	NOEC	7.8	1	6.1	94	Fel et al. (2019)

Safety Assessment Approach for other Environmental Organisms

- Comparing EU REACH derived PNECs for all environmental compartments* with effect values on other non-standard test species** (literature)
- PNECs were usually based on standard test organisms (freshwater, freshwater sediment, terrestrial) and Assessment Factors

- Majority of literature data refer to fresh- and marine water species
- All comparable effect values (e.g., LC₅₀) from non-standard organisms were above the derived PNECs
 - Derived PNECs for all environmental compartments were protective for other non-standard test organisms

Cosmetic UV filters in the environment - state of the art in EU regulations, <u>science</u> and possible knowledge gaps

Sascha Pawlowski, Laura Henriette <u>Lütiens</u>, Alina Preibisch, Stephanie Acker, Mechtild Petersen-Thiery

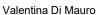
Int. J. Cosm. Sci. Special series Sun Protection (submitted)

White			Classical Public	Forbid to this Constitute : Policy									
	Name and Add St. 12. Technic St. 12.					Names and party (4)		Non-min (4) (5)		Steen national (significance)		Sente (a) by tall (a)	
	PART	Minimization agency	mac	Minimum and a second	mac	-	ment	CON INCOME.	Part	Pilita institute Agentus	res	-	
-	to thinks	FIR (Malgares Innegative AS /II	a reside	Ti Hart R	n Handra	CH Parage	-	TT Shallows allowers (S) (M)	in Harolina		n inner	100	
ant.	-	No. (Malayana Sanajaka 10) (S	440	MARK Digital Salper, JOSE	-		i keer	FF-shape section.	(84.)		*		
ins	- 100		WW.	NOT Dealer Imposit JT	(481)		4.96	100 pak san. 110	ART		811	10.000	
-	No. PROC.		10 THE .	M Section (S) (S)	in max.			OF SQUARE	No Print Street		to Pilliand	***	
-	10.7500 mod			TOTAL CONTRACTOR	-			400 Janua Labor (1) (19)	- Car		-	WEED	
-	10.7000 mod	***		7 Mar Care can (1)				000 (breaks to 65 (45	04 PRES		No Period and		
N. Peter		100	-		-	***	-		to men		to Print asset	10.000	
-	to their	7.00	-	-91 for m II Pl	14 mer		-	Company (S)	to make		-		
-	to HALL most		-				=		to their		to Piliti annual	***	
	to men			off Date of St	-			Code Will Division	and made		is recommend		
	-	375	-	THE WORLD	-	25	-			2.77		V.C.Z.	
mrett.	-	***	-	T Parlaments amounts (S) (T)	-		-	phonomical (K	to men	**	is necessary	7,50	
-	-	Parkers SM (Mindels, Series, SM) (F)	,	M fune to M	1	- All Principle Maries, 1923	**	NY Sumpo piton NY II			in Parl and	1875	
-	to men	***	598	No. E IN			her.				.4.	14.00	
-			40	Name M. (18)	ma			5	***		**		
-	to make		17	17 ap (m) m		275		est banks w		-77	No Principal and		
-	-		177	April 100	1997	**	77	Contract II Stands down \$10.075	**	**	7	7.7*	
7884	to men	***	no const.		n rec		20 FEET 1	-	to their			1000	
700	number of	***			to medi		-		to made		to president	~ 40	
-	No. PROCE	***	No. PROFIT	**	As March Arrest 1				to men		No. Print's assert		
-	St. HEET ST. FEET				to make	***			Named Amend		in Pipil sour	10.000	
	-		****		-		-		-		A PRODUCT	-	
-	- 100	4.00	20	100	1/may V		43		9451		100		

^{*}Sewage treatment plant (STP), fresh- and marine water, fresh- and marine sediment, terrestrial

^{**}included taxonomic groups: bacteria, algae, corals, annelids, mollusks, crustacea, arthropods, echinodermata, fish

Summary


- Short term toxicity texts on adult corals (acute) and larvae (chronic) are ready for pre-validation under ISO/OECD
- Further long-term (chronic toxicity) tests on adult corals are in progress
- Bioaccumulation tests in corals are planned
- However, standardization of coral toxicity tests is a long way to go
- PNEC_{marine water} as derived within EU REACH could be used as a surrogate to protect corals until standardized methods become available
- Furthermore, EU REACH derived PNECs for all environmental compartments were protective for other non-standard test organisms

The Team

University of Oldenburg (UOL)

David Brefeld

Dr. Mareen Möller

Dr. Samuel Nietzer

Dr. Matthias Y. Kellermann

Prof. Dr. Peter J. Schupp

Former UOL members: Dr. Elham Kamyab, Ingo B. Miller

BASF

Laura H. Lütjens

Dr. Mechtild Petersen-Thiery

Dr. Sascha Pawlowski

I BASF

We create chemistry