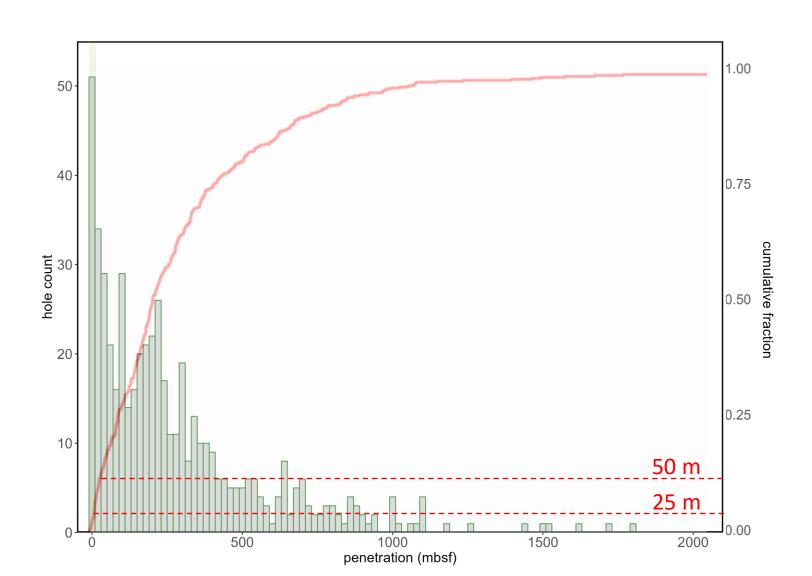
Seafloor Sampling from US Academic Research Fleet

Marine Rock and Sediment Sampling Facility
© Oregon State University

UNOLS Marine Rock and Sediment Sampling (MARSSAM) Facility supports NSF Pl's across the fleet

Many options for recovering sediment-water interface, seafloor rock exposures, and cores <10 m length, essentially one option for recovering cores >10 m and <30 m, no options for recovering cores >30 m



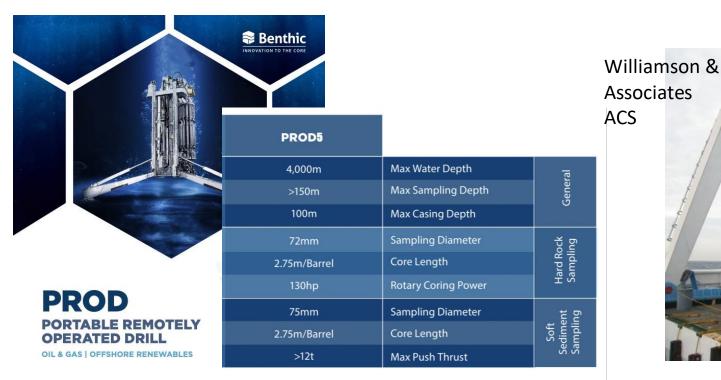
What does that mean for Riserless Drilling objectives?

Data courtesy of L. Childress (IODP)

Represent number of nonmudline (i.e. more than 1 core) holes drilled by International Ocean Discovery Program from JOIDES Resolution

If we assume hole length is reflective of scientific objective, <5% of objectives can be met with current NSF-supported infrastructure/facilities/vessels

Restoration of 50+ m jumbo piston core capabilities gets closer to 10% but requires a ship capable of handling it.


How can we sustain US research leadership in the

Promising option is purchase or contract for use of a seafloor lander-based coring/drilling system (or systems)

Can be adapted to many different platforms, including icebreakers

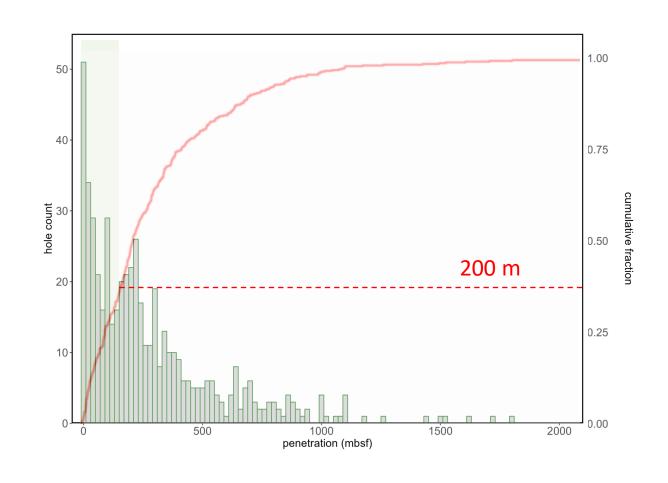
near term?

Need deck space for support containers and heavy overboarding (details dependent on system)

How do we get there? Develop an Operational Model

- 1. Establish scientific mission requirement
- **2. Identify plan for infrastructure:** Develop NSF Facility, longterm industry lease, occasion-basis contracts?
- **3. Establish access to capable vessel (or, better, vessels):** new or adapted ARF asset, Antarctic Research Vessel, non-profit partnership platform (e.g. SIO R/V Falkor (too)), industry contract/lease, some combination?

4. How will we facilitate enduring access to recovered material? new or expanded existing core repository, modular labs vs. repository analytical infrastructure, etc.?


	Full Industry Contract/Lease Option	Full NSF/Non-profit partnership Option
Advantages	immediate functionality, low maintenance	lower cost per operation, reinvestment in US research community, more science supported
Disadvantages	Sustained high cost per operation, fewer science ops supported per year	significant initial start-up cost associated with facility development and tech training

A message of hope...

There are achievable and innovative options to access the <200 m subseafloor during the hiatus in US-led Riserless Drilling

Possible to meet ~40% of IODP objectives for ~10% the current sustained operational cost, while opening important research opportunities (e.g. high latitude and shallowwater environments)

Lander drilling will not replace the critical capabilities of a riserless drilling platform like JOIDES Resolution, but is likely to be an important part of the solution, perhaps in addition to partnerships with (IODP3/ECORD) to sustain access for deeper drilling objectives as the US community reimagines its future

Maureen (Mo) Walczak Oregon State University mo.walczak@oregonstate.edu