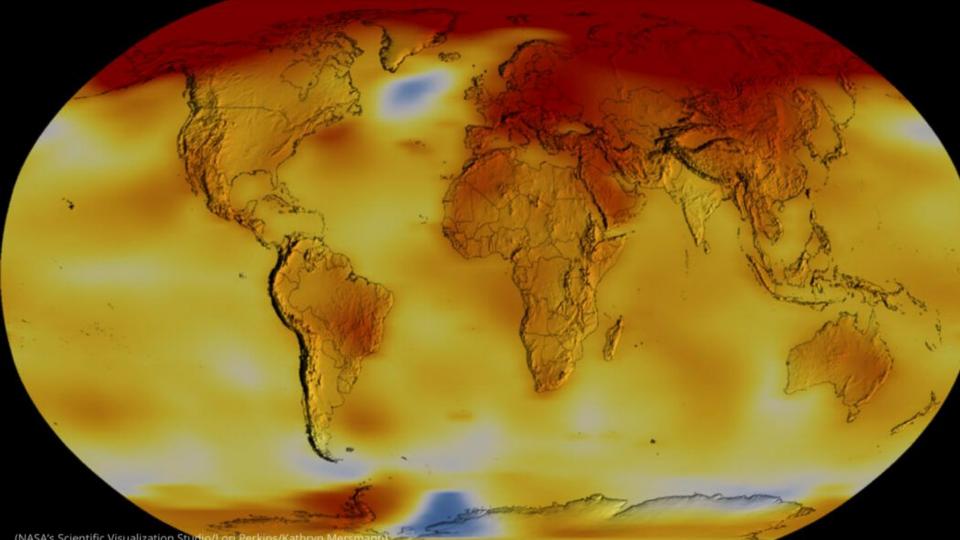
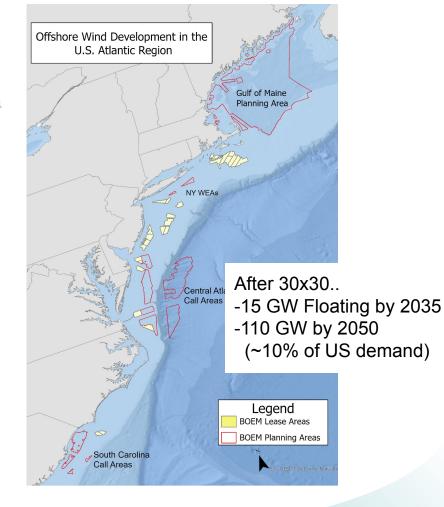


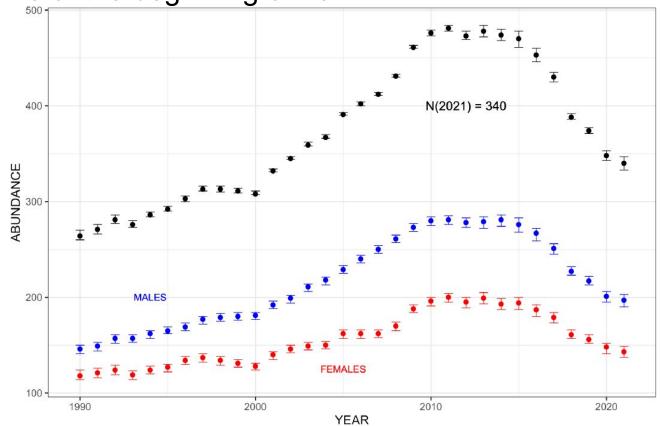
Potential ecosystem effects of Offshore Wind Development on North Atlantic Right Whales

Sean Hayes, NEFSC presenting


Image from: Hasager, C. B., L. Rasmussen, A. Peña, L. E. Jensen, and P.-E. Réthoré. 2013. Wind Farm Wake: The Horns Rev Photo Case. 6:696-716.



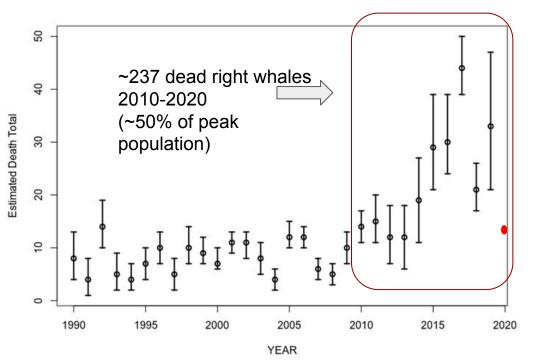
30 GW by 2030: Policies for expanding US offshore wind capacity


FACT SHEET: Biden Administration Jumpstarts Offshore Wind Energy Projects to Create Jobs

"The Departments of Interior (DOI), Energy (DOE), and Commerce (DOC) are announcing a shared goal to deploy 30 gigawatts (GW) of offshore wind in the United States by 2030, while protecting biodiversity and promoting ocean co-use....

Right whale population estimate update

As of the beginning of 2021

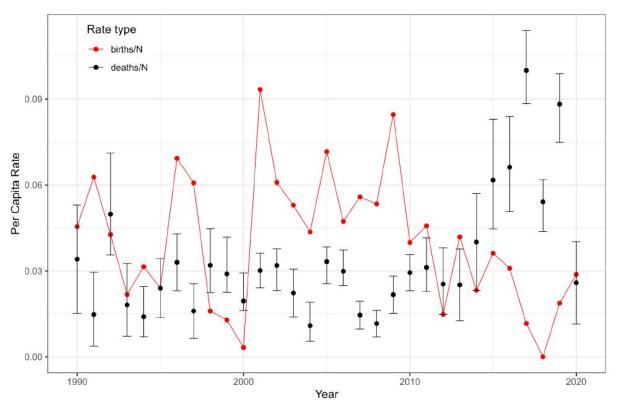

Population: 340 (credible interval 333-347)

Females: 143 (CI 137-149)

Known reproductive: <70 with >50% probability of being alive

Estimated Annual Mortality

(d[t] = N[t] + b[t] - N[t+1])



YEAR	EST Mort (median)	Obs Mort	Obs SI	Obs SI+M
2015	29	3	4	7
2016	30	4	9	13
2017	43	17	2	19
2018	21	3	6	9
2019	33	10	2	12
2020	13			

Hayes, S., et al. 2022. US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments-2021 NOAA Tech Memo NMFS NE-288. 288: 479. Available from https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports

Method in: Pace III, R.M., et al. 2021. Cryptic mortality of North Atlantic right whales. Conservation Science and Practice. 3(2): e346. doi:https://doi.org/10.1111/csp2.346.

Birth rates are down... (N[t+1] = N[t] + b[t] - d[t])

Hayes, S., et al. 2022. US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments-2021 NOAA Tech Memo NMFS NE-288. 288: 479. Available from https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports *2020 values in review for 2023 assessment. Figure from IWC report

Why?

- Ecosystem shifts
- Whale behavior/distribution change into 'unmanaged' areas
- More encounters between whales, fishing gear and vessels
- Skinny whales don't have babies

Right Whales are specialists = less resilience to change

E	Bowhead Whale Balaena mysticetus	North Atlantic right whale Eubalaena glacialis	Whale shark Rhincodon typus	Basking shark Cetorhinus maximus
Gape Area	4.23 m ²	1–2 m²	0.1 m ²	0.4 m^2
Body Length	12 m	10–14 m	6 m	4-6.5 m
Speed	0.7 m/s	1.2 m/s	0.3–1 m/s	0.85 m/s
Filtration Rate	$3.0 \text{ m}^3/\text{s}$	1.4-2.4 m ³ /s	0.01-0.1 m ³ /s	$0.3 \text{ m}^3\text{/s}$
Prey Concentration	1–10 g/m ³	>170 g/m³ 10³–10 ⁵ copepods/m³	10 ⁴ plankton/m ³	$0.3-3 \text{ g/m}^3$
Pause Interval	150 s	50 s	120–180 s	30-60 s
References	Werth (2004) Simon et al. (2009) Laidre et al. (2007)	This study Murison & Gaskin (1989) Baumgartner & Mate (2003)	Nelson & Eckert (2007) Motta et al. (2010)) Hallacher (1977) Sims (2000)

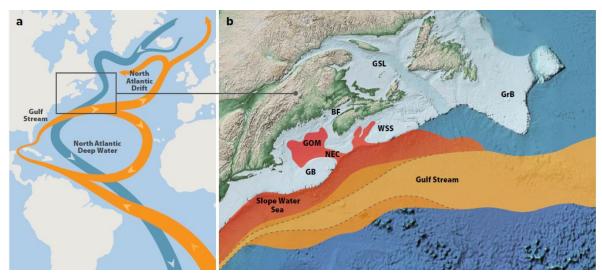
Functional Ecology, Volume: 33, Issue: 7, Pages: 1290-1306, First published: 11 May 2019, DOI: (10.1111/1365-2435.13357)

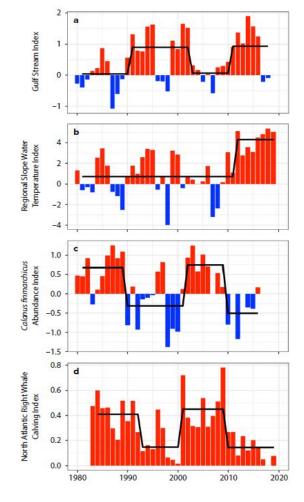
Plankton disruption concerns

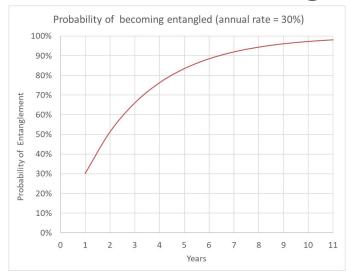
- Abundance
- Distribution/Distance
- Density/Aggregation
- Energy content

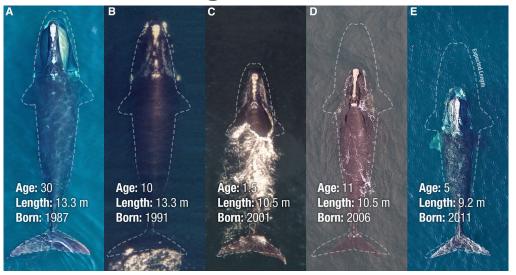
Zooplankton : Crustacea - Copepoda : Calanoida : Calanidae : Calanus :

Calanus finmarchicus


Photo Credit: Jeffrey Runge University of Maine (UMAINE)


Costs of Ecosystem Change



- 2010- NW Atlantic regime shift in gulf stream- warm water arrived
- Calanus abundance declines
- Calving rate declines
- Most successful moms find food in Gulf of St Lawrence
- Vessel strike and entanglement increase

NARW Stress and Energetic Costs of Entanglement

- Entanglement chronic- ~30% show fresh entanglement injury annually
- NARW increasingly stunted through entanglement stress -> less fecund
- Capital breeder- must acquire sufficient resources to produce calves
 - Breeding interval currently doubled from 4 to 8 years between calves, and most animal die before 40
 - Approx lifetime calving potential dropped from >15 to <4

Hamilton, P.K. et al 2022. Maintenance of the North Atlantic Right Whale Catalog. Anderson Cabot Center for Ocean Life, New England Aquarium. Submitted to NOAA/NMFS/NEFSC Contract No. 1305M2-18-P-NFFM-0108. https://www.narwc.org/narw-catalog-reports.html **Stewart, J.D., et al.** 2021. Decreasing body lengths in North Atlantic right whales. 31(14): 3174-3179. e3173.

Stewart, J.D., et al. 2022. Larger females have more calves: influence of maternal body length on fecundity in North Atlantic right whales. MEPS 689: 179-189. Pettis et al 2022NARW report card 2022 https://www.narwc.org/uploads/1/1/6/6/116623219/2022reportcardfinal.pdf

Potential conservation concerns with wind development

General threat categories

- 1. Vessel Strikes
- 2. Entanglement
 - a. Fisheries Displacement
 - b. Increased pot/trap fishing?
 - c. Ghost gear on cables/pilings
 - d. Floating wind structures?
- 3. Noise
- 4. Ecosystem change
 - a. Predation
 - b. Habitat alterations
 - c. Oceanographic processes
- Evaluated at project level and above scaled up across many projects
- NMFS PET PVA considers 1-4 in general but specifics require more development

Offshore Wind Energy Development and North Atlantic Right Whale **Foraging Ecology**

Ocean Circulation

Wind energy development affects both horizontal and vertical ocean circulation in the area

(2)

Zooplankton

Ocean circulation impacts zooplankton abundance, density, energy content, and distribution in foraging habitat

3

Health

Changes in zooplankton communities affect body condition and health

Population

Changes in body condition affect female calving rates

Wake effects of concern

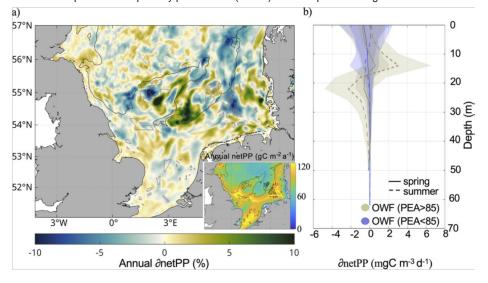
- Attenuation/energy loss
- 'Damming' effect
- Large scale dipoles
- Lateral and vertical flow change
- Stratification effects
 - Temperature
 - Salinity
- Magnitudes ? 1->10%?

Christiansen, N., et al. 2022. Emergence of Large-Scale Hydrodynamic Structures Due to Atmospheric Offshore Wind Farm Wakes. Front. Mar. Sci., 03 February 2022 | https://doi.org/10.3389/fmars.2022.818501.

Daewel, U., et al. 2022. Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea. Communications Earth & Environment 3(1): 292. doi:10.1038/s43247-022-00625-0.

Golbazi, M., C. L. Archer, and S. Alessandrini. 2022. Surface impacts of large offshore wind farms. J Environmental Research Letters 17:064021

Sub-surface Mixing effects


- Wake turbulence
- Mixes cool bottom & warm surface water
 - Nutrient flux ↑
 - Chlorophyll ↑
 - Reduced stratification
 - Decreased DO
 - o Plankton?

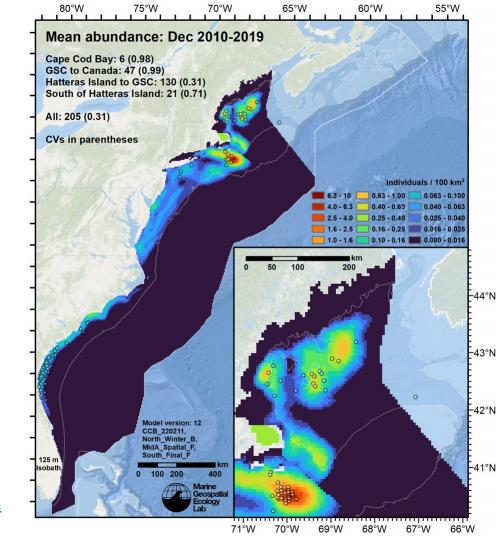
Annual mean response of net primary productions (netPP) to atmospheric changes due to offshore wind farms.

fisheries & wildlife

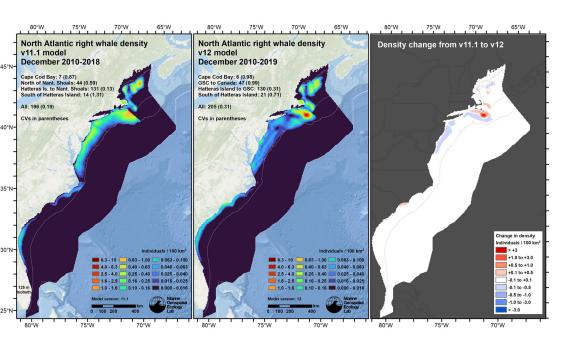
infrastructure enhanced mixing

Daewel, U., et al. 2022. Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea. Communications Earth & Environment 3(1): 292. doi:10.1038/s43247-022-00625-0.

Dorrell, R. M., et al 2022. Anthropogenic Mixing in Seasonally Stratified Shelf Seas by Offshore Wind Farm Infrastructure. Front. Mar. Sci., 22 March 2022 | https://doi.org/10.3389/fmars.2022.830927.


Ramasco, V. 2022. Glider study at Hywind Scotland. Akvaplan-niva https://cdn.equinor.com/files/h61q9gi9/global/c6c3696bf8a2c3c3055a85eeca3d53d25005ea51.pdf?report-hywind-scotland-sailbuoy-campaign-equinor.pdf

NARW and **Nantucket** shoals


- Nantucket Shoals is a critical foraging area - Nov-May (only known area Nov-Feb)
- OSW will likely change oceanographic features and may change zooplankton dynamics - question is magnitude and importance of change (science need)

Duke Habitat based cetacean density model- <u>Version 12 (sightings 2011-22)</u> updated March 2022

Roberts, J. J., et al. 2016. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico. Scientific Reports 6:22615.

NARW habitat use at Nantucket Shoals increasing year round

- Adding 2020 data- density at NS increased in all 12 months
- Raw sightings still increasing Aug-Oct for 2017-2022

Quintana-Rizzo, E., et al 2021. Residency, demographics, and movement patterns of North Atlantic right whales Eubalaena glacialis in an offshore wind energy development in southern New England, USA. Endangered Species Research 45: 251-268. Available from https://www.int-res.com/abstracts/esr/v45/p251-268/ **Duke Habitat based cetacean density model-**Version 12 (sightings 2011-22) updated March 2022

Questions NMFS management needs addressed:

- What is the potential change to zooplankton?
 - Abundance
 - Density
 - Distribution
 - Energy content
- What is spatial and temporal scale of potential risk/change to zooplankton from wind farms?
- How does this vary at turbine, lease area, and wind energy area scales?
- What is the anticipated temporal lag time between wind farm operations and impacts on zooplankton?
- Does location of the wind farm relative to certain oceanographic features impact magnitude or spatial extent of potential prey impacts? If so, what types of features?
- Will forage fish/plankton/jellyfish/salps be affected by changes to oceanographic features? If so, what is the magnitude and temporal-spatial extent of impacts? (re. fin, humpback, delphinid and sea turtle diet)
- If impacts are expected, what measures are needed to mitigate the impacts?

What is the range of impacts for a specialist that has experienced 50% mortality in past decade and reduced calving?

Our Mission:

NOAA Fisheries is responsible for the stewardship of the nation's ocean resources and their habitat.